Allan V Kalueff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5996492/publications.pdf

Version: 2024-02-01

303 papers 16,855 citations

63 h-index 20307 116 g-index

309 all docs

 $\begin{array}{c} 309 \\ \\ \text{docs citations} \end{array}$

309 times ranked

13437 citing authors

#	Article	IF	CITATIONS
1	The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns. Current Neuropharmacology, 2022, 20, 476-493.	1.4	9
2	Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 112, 110405.	2.5	14
3	Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Progress in Neurobiology, 2022, 208, 101993.	2.8	18
4	Nociception-related behavioral phenotypes in adult zebrafish. , 2022, , 387-393.		1
5	Understanding sex differences in zebrafish pain- and fear-related behaviors. Neuroscience Letters, 2022, 772, 136412.	1.0	3
6	MPTP-Treated Zebrafish Recapitulate â€~Late-Stage' Parkinson's-like Cognitive Decline. Toxics, 2022, 10,	696	10
7	Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. Journal of Neuroinflammation, 2022, 19, 39.	3.1	12
8	Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells, 2022, 11, 1036.	1.8	4
9	Towards Modeling Anhedonia and Its Treatment in Zebrafish. International Journal of Neuropsychopharmacology, 2022, 25, 293-306.	1.0	3
10	Towards translational modeling of behavioral despair and its treatment in zebrafish. Behavioural Brain Research, 2022, , 113906.	1.2	1
11	Modeling neurodegenerative disorders in zebrafish. Neuroscience and Biobehavioral Reviews, 2022, 138, 104679.	2.9	23
12	Acute behavioral and Neurochemical Effects of Novel <i>N</i> Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chemical Neuroscience, 2022, 13, 1902-1922.	1.7	4
13	The critical impact of sex on preclinical alcohol research - insights from zebrafish. Frontiers in Neuroendocrinology, 2022, , 101014.	2.5	0
14	Effects of acute and chronic arecoline in adult zebrafish: Anxiolytic-like activity, elevated brain monoamines and the potential role of microglia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 109977.	2.5	36
15	Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress, 2021, 24, 1-18.	0.8	36
16	Studying CNS effects of Traditional Chinese Medicine using zebrafish models. Journal of Ethnopharmacology, 2021, 267, 113383.	2.0	12
17	Psychopharmacological characterization of an emerging drug of abuse, a synthetic opioid U-47700, in adult zebrafish. Brain Research Bulletin, 2021, 167, 48-55.	1.4	5
18	Of mice and zebrafish: the impact of the experimenter identity on animal behavior. Lab Animal, 2021, 50, 7-7.	0.2	10

#	Article	IF	CITATIONS
19	CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110086.	2.5	6
20	Altered behaviour, dopamine and norepinephrine regulation in stressed mice heterozygous in TPH2 gene. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 108, 110155.	2.5	10
21	Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Research Bulletin, 2021, 166, 44-53.	1.4	9
22	Pro-social and anxiolytic-like behavior following a single 24-h exposure to $17\hat{l}^2$ -estradiol in adult male zebrafish. Neuroscience Letters, 2021, 747, 135591.	1.0	4
23	Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant. Frontiers in Nutrition, 2021, 8, 661455.	1.6	16
24	Auditory environmental enrichment prevents anxiety-like behavior, but not cortisol responses, evoked by 24-h social isolation in zebrafish. Behavioural Brain Research, 2021, 404, 113169.	1.2	10
25	Color as an important biological variable in zebrafish models: Implications for translational neurobehavioral research. Neuroscience and Biobehavioral Reviews, 2021, 124, 1-15.	2.9	11
26	Putative anxiolytic-like behavioral effects of acute paracetamol in adult zebrafish. Behavioural Brain Research, 2021, 409, 113293.	1.2	4
27	Modulation of behavioral and neurochemical responses of adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in the prolonged chronic unpredictable stress model. Scientific Reports, 2021, 11, 14289.	1.6	9
28	Exploring CNS effects of American traditional medicines using zebrafish models. Current Neuropharmacology, 2021, 19, .	1.4	2
29	Unconventional anxiety pharmacology in zebrafish: Drugs beyond traditional anxiogenic and anxiolytic spectra. Pharmacology Biochemistry and Behavior, 2021, 207, 173205.	1.3	7
30	Sex differences shape zebrafish performance in a battery of anxiety tests and in response to acute scopolamine treatment. Neuroscience Letters, 2021, 759, 135993.	1.0	12
31	The role of auditory and vibration stimuli in zebrafish neurobehavioral models. Behavioural Processes, 2021, 193, 104505.	0.5	3
32	Understanding how stress responses and stress-related behaviors have evolved in zebrafish and mammals. Neurobiology of Stress, 2021, 15, 100405.	1.9	18
33	Zebrafish Models for Stress Research. , 2021, , 263-268.		1
34	Understanding early-life pain and its effects on adult human and animal emotionality: Translational lessons from rodent and zebrafish models. Neuroscience Letters, 2021, 768, 136382.	1.0	1
35	On the value of zebrafish outbred strains in neurobehavioral research. Lab Animal, 2021, , .	0.2	6
36	Sex differences in behavior and neuropharmacology of zebrafish. European Journal of Neuroscience, 2020, 52, 2586-2603.	1.2	49

#	Article	IF	CITATIONS
37	Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience, 2020, 445, 3-11.	1.1	53
38	Sex differences in adult zebrafish anxiolytic-like responses to diazepam and melatonin. Neuroscience Letters, 2020, 714, 134548.	1.0	42
39	High-glucose/high-cholesterol diet in zebrafish evokes diabetic and affective pathogenesis: The role of peripheral and central inflammation, microglia and apoptosis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 96, 109752.	2.5	33
40	Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. Journal of Neuroscience Research, 2020, 98, 764-779.	1.3	21
41	Understanding neurobehavioral genetics of zebrafish. Journal of Neurogenetics, 2020, 34, 203-215.	0.6	12
42	Seahorse treatment improves depression-like behavior in mice exposed to CUMS through reducing inflammation/oxidants and restoring neurotransmitter and neurotrophin function. Journal of Ethnopharmacology, 2020, 250, 112487.	2.0	50
43	A new method for vibration-based neurophenotyping of zebrafish. Journal of Neuroscience Methods, 2020, 333, 108563.	1.3	7
44	DARK Classics in Chemical Neuroscience: Kava. ACS Chemical Neuroscience, 2020, 11, 3893-3904.	1.7	14
45	Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sciences, 2020, 241, 117163.	2.0	30
46	Neuroâ€Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neuroscience and Therapeutics, 2020, 26, 504-517.	1.9	24
47	Ultrasound stress compromises the correlates of emotional-like states and brain AMPAR expression in mice: effects of antioxidant and anti-inflammatory herbal treatment. Stress, 2020, 23, 481-495.	0.8	16
48	Molecular and behavioural abnormalities in the FUSâ€ŧg mice mimic frontotemporal lobar degeneration: Effects of old and new antiâ€ɨnflammatory therapies. Journal of Cellular and Molecular Medicine, 2020, 24, 10251-10257.	1.6	10
49	Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Scientific Reports, 2020, 10, 19981.	1.6	24
50	Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nature Biomedical Engineering, 2020, 4, 1010-1022.	11.6	78
51	An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish. Journal of Psychopharmacology, 2020, 34, 1449-1456.	2.0	19
52	Stress-induced aggression in heterozygous TPH2 mutant mice is associated with alterations in serotonin turnover and expression of 5-HT6 and AMPA subunit 2A receptors. Journal of Affective Disorders, 2020, 272, 440-451.	2.0	17
53	Metabolic, Molecular, and Behavioral Effects of Western Diet in Serotonin Transporter-Deficient Mice: Rescue by Heterozygosity?. Frontiers in Neuroscience, 2020, 14, 24.	1.4	13
54	Zebrafish models of impulsivity and impulse control disorders. European Journal of Neuroscience, 2020, 52, 4233-4248.	1.2	8

#	Article	IF	Citations
55	Behavioral Studies in Zebrafish. , 2020, , 24-24.		1
56	The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. Journal of Neuroscience Methods, 2020, 337, 108637.	1.3	25
57	Cross-species Analyses of Intra-species Behavioral Differences in Mammals and Fish. Neuroscience, 2020, 429, 33-45.	1.1	9
58	Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: Focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behavioural Brain Research, 2020, 389, 112644.	1,2	18
59	The impact of housing environment color on zebrafish anxiety-like behavioral and physiological (cortisol) responses. General and Comparative Endocrinology, 2020, 294, 113499.	0.8	19
60	Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacology Biochemistry and Behavior, 2020, 193, 172928.	1.3	16
61	Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes – Effects that are susceptible to antidepressants. Neurobiology of Learning and Memory, 2020, 172, 107227.	1.0	11
62	Behavioral and physiological effects of acute and chronic kava exposure in adult zebrafish. Neurotoxicology and Teratology, 2020, 79, 106881.	1.2	24
63	Motor patterns and swim path characteristics: the ethogram of zebrafish. , 2020, , 125-140.		1
64	Melatonin treatment reverses cognitive and endocrine deficits evoked by a 24-h light exposure in adult zebrafish. Neuroscience Letters, 2020, 733, 135073.	1.0	11
65	Developing zebrafish experimental animal models relevant to schizophrenia. Neuroscience and Biobehavioral Reviews, 2019, 105, 126-133.	2.9	19
66	Naloxone prolongs abdominal constriction writhing-like behavior in a zebrafish-based pain model. Neuroscience Letters, 2019, 708, 134336.	1.0	14
67	DARK Classics in Chemical Neuroscience: Arecoline. ACS Chemical Neuroscience, 2019, 10, 2176-2185.	1.7	52
68	Astrocyte-Conditioned Medium Protects Prefrontal Cortical Neurons from Glutamate-Induced Cell Death by Inhibiting TNF-α Expression. NeuroImmunoModulation, 2019, 26, 33-42.	0.9	9
69	Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. Behavioural Brain Research, 2019, 363, 109-117.	1.2	47
70	Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience, 2019, 404, 218-232.	1.1	36
71	Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacological Research, 2019, 141, 602-608.	3.1	33
72	Modeling gut-brain interactions in zebrafish. Brain Research Bulletin, 2019, 148, 55-62.	1.4	22

#	Article	IF	CITATIONS
73	When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt †flakka' on adult zebrafish. Neurotoxicology and Teratology, 2019, 73, 15-21.	1.2	11
74	Abnormal repetitive behaviors in zebrafish and their relevance to human brain disorders. Behavioural Brain Research, 2019, 367, 101-110.	1.2	18
75	Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opinion on Drug Discovery, 2019, 14, 365-378.	2.5	14
76	The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. Aquatic Toxicology, 2019, 210, 44-55.	1.9	27
77	Pharmacological screening of a new alpha-2 adrenergic receptor agonist, mafedine, in zebrafish. Neuroscience Letters, 2019, 701, 234-239.	1.0	8
78	Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neuroscience and Biobehavioral Reviews, 2019, 100, 9-18.	2.9	35
79	The Influence of Behavioral, Social, and Environmental Factors on Reproducibility and Replicability in Aquatic Animal Models. ILAR Journal, 2019, 60, 270-288.	1.8	20
80	DARK Classics in Chemical Neuroscience: Atropine, Scopolamine, and Other Anticholinergic Deliriant Hallucinogens. ACS Chemical Neuroscience, 2019, 10, 2144-2159.	1.7	47
81	Effects of lidocaine on adult zebrafish behavior and brain acetylcholinesterase following peripheral and systemic administration. Neuroscience Letters, 2019, 692, 181-186.	1.0	15
82	Legal aspects of zebrafish neuropharmacology and neurotoxicology research. Regulatory Toxicology and Pharmacology, 2019, 101, 65-70.	1.3	19
83	Understanding zebrafish aggressive behavior. Behavioural Processes, 2019, 158, 200-210.	0.5	56
84	Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 90, 104-116.	2.5	35
85	Zebrafish models of diabetes-related CNS pathogenesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 48-58.	2.5	18
86	The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neuroscience and Biobehavioral Reviews, 2019, 99, 117-127.	2.9	21
87	Acute behavioral effects of deliriant hallucinogens atropine and scopolamine in adult zebrafish. Behavioural Brain Research, 2019, 359, 274-280.	1.2	26
88	DARK Classics in Chemical Neuroscience: α-Pyrrolidinovalerophenone ("Flakkaâ€). ACS Chemical Neuroscience, 2019, 10, 168-174.	1.7	16
89	Zebrafish models for personalized psychiatry: Insights from individual, strain and sex differences, and modeling gene x environment interactions. Journal of Neuroscience Research, 2019, 97, 402-413.	1.3	43
90	Understanding nociception-related phenotypes in adult zebrafish: Behavioral and pharmacological characterization using a new acetic acid model. Behavioural Brain Research, 2019, 359, 570-578.	1.2	38

#	Article	IF	CITATIONS
91	Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models. ACS Chemical Neuroscience, 2019, 10, 143-154.	1.7	19
92	Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology, 2018, 92, 1-12.	1.3	20
93	Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models. European Journal of Pharmacology, 2018, 829, 129-140.	1.7	12
94	Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert Opinion on Therapeutic Targets, 2018, 22, 319-330.	1.5	32
95	Zebrafish models relevant to studying central opioid and endocannabinoid systems. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 86, 301-312.	2.5	48
96	Zebrafish models of autism spectrum disorder. Experimental Neurology, 2018, 299, 207-216.	2.0	103
97	Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin- $1\hat{l}^2$ administration. European Journal of Nutrition, 2018. 57. 1781-1791.	1.8	62
98	The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Experimental Neurology, 2018, 299, 157-171.	2.0	188
99	Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 384-394.	2.5	77
100	The effects of auditory enrichment on zebrafish behavior and physiology. PeerJ, 2018, 6, e5162.	0.9	34
101	Zebrafish models of epigenetic regulation of CNS functions. Brain Research Bulletin, 2018, 142, 344-351.	1.4	23
102	Commentary: Establishing zebrafish as a model to study the anxiolytic effects of scopolamine. Frontiers in Pharmacology, 2018, 9, 293.	1.6	6
103	Zebrafish models: do we have valid paradigms for depression?. Journal of Pharmacological and Toxicological Methods, 2018, 94, 16-22.	0.3	34
104	The Effects of Chronic Amitriptyline on Zebrafish Behavior and Monoamine Neurochemistry. Neurochemical Research, 2018, 43, 1191-1199.	1.6	38
105	Understanding the Role of Environmental Enrichment in Zebrafish Neurobehavioral Models. Zebrafish, 2018, 15, 425-432.	0.5	19
106	Antidepressant Discontinuation Syndrome. , 2018, , .		0
107	Zebrafish models in neuropsychopharmacology and CNS drug discovery. British Journal of Pharmacology, 2017, 174, 1925-1944.	2.7	137
108	Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?. Neuroscience and Biobehavioral Reviews, 2017, 77, 148-164.	2.9	101

#	Article	IF	Citations
109	The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. , 2017, , .		23
110	Illustrated Zebrafish Neurobehavioral Glossary., 2017,, 291-317.		3
111	Zebrafish Models of Anxiety-Like Behaviors. , 2017, , 45-72.		21
112	Better lab animal models for translational neuroscience research and CNS drug development. Lab Animal, 2017, 46, 91-92.	0.2	14
113	Anxiolytic-like effects of noribogaine in zebrafish. Behavioural Brain Research, 2017, 330, 63-67.	1.2	14
114	Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. Zebrafish, 2017, 14, 197-208.	0.5	169
115	Acute effects of amitriptyline on adult zebrafish: Potential relevance to antidepressant drug screening and modeling human toxidromes. Neurotoxicology and Teratology, 2017, 62, 27-33.	1.2	46
116	Understanding zebrafish cognition. Behavioural Processes, 2017, 141, 229-241.	0.5	40
117	N -methyl- d -aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus. Journal of Neuroimmunology, 2017, 307, 7-13.	1.1	40
118	Effects of a non-competitive N-methyl-d-aspartate (NMDA) antagonist, tiletamine, in adult zebrafish. Neurotoxicology and Teratology, 2017, 59, 62-67.	1.2	14
119	Effects of ZnSO4-induced peripheral anosmia on zebrafish behavior and physiology. Behavioural Brain Research, 2017, 320, 275-281.	1.2	14
120	Psychedelic Drugs in Biomedicine. Trends in Pharmacological Sciences, 2017, 38, 992-1005.	4.0	113
121	Understanding taurine CNS activity using alternative zebrafish models. Neuroscience and Biobehavioral Reviews, 2017, 83, 525-539.	2.9	16
122	Animal inflammation-based models of depression and their application to drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 995-1009.	2.5	57
123	Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Animal, 2017, 46, 378-387.	0.2	49
124	Developing translational biological psychiatry: Learning from history to build the future. Biological Communications, 2017, 62, 278-292.	0.4	1
125	Commentary: Ethological Evaluation of the Effects of Social Defeat Stress in Mice: Beyond the Social Interaction Ratio. Frontiers in Behavioral Neuroscience, 2016, 10, 155.	1.0	7
126	Commentary: Supplier-dependent differences in intermittent voluntary alcohol intake and response to naltrexone in Wistar rats. Frontiers in Neuroscience, 2016, 10, 82.	1.4	1

#	Article	IF	CITATIONS
127	Vitamin D and cognition in older adults: international consensus guidelines. Psychologie & Neuropsychiatrie Du Vieillissement, 2016, 14, 265-273.	0.2	15
128	Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neuroscience and Biobehavioral Reviews, 2016, 65, 292-312.	2.9	63
129	Building neurophenomics in zebrafish: Effects of prior testing stress and test batteries. Behavioural Brain Research, 2016, 311, 24-30.	1.2	15
130	Mouse Models for Studying Depression-Like States and Antidepressant Drugs. Methods in Molecular Biology, 2016, 1438, 255-269.	0.4	14
131	Experimental Models of Anxiety for Drug Discovery and Brain Research. Methods in Molecular Biology, 2016, 1438, 271-291.	0.4	10
132	Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Research Bulletin, 2016, 125, 79-91.	1.4	43
133	'Stressing' rodent self-grooming for neuroscience research. Nature Reviews Neuroscience, 2016, 17, 591-591.	4.9	38
134	The smell of "anxiety― Behavioral modulation by experimental anosmia in zebrafish. Physiology and Behavior, 2016, 157, 67-71.	1.0	29
135	Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews Neuroscience, 2016, 17, 45-59.	4.9	558
136	Exploring Hallucinogen Pharmacology and Psychedelic Medicine with Zebrafish Models. Zebrafish, 2016, 13, 379-390.	0.5	23
137	The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?. Progress in Lipid Research, 2016, 62, 41-54.	5.3	146
138	Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opinion on Drug Discovery, 2016, 11, 11-25.	2.5	16
139	Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert) mice. Behavioural Brain Research, 2016, 296, 47-52.	1.2	23
140	Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicology, 2016, 170, 297-309.	1.9	106
141	Understanding the genetic architectonics of complex CNS traits: Lost by the association, but found in the interaction?. Journal of Psychopharmacology, 2015, 29, 872-877.	2.0	2
142	Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Frontiers in Behavioral Neuroscience, 2015, 9, 14.	1.0	58
143	Perspectives on zebrafish neurobehavioral pharmacology. Pharmacology Biochemistry and Behavior, 2015, 139, 93.	1.3	11
144	â€~Vitamin D and cognition in older adults': updated international recommendations. Journal of Internal Medicine, 2015, 277, 45-57.	2.7	130

#	Article	IF	Citations
145	Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacology Biochemistry and Behavior, 2015, 139, 112-120.	1.3	38
146	Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neuroscience and Biobehavioral Reviews, 2015, 53, 25-36.	2.9	50
147	The failure of anxiolytic therapies in early clinical trials: what needs to be done. Expert Opinion on Investigational Drugs, 2015, 24, 543-556.	1.9	15
148	Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 63, 76-82.	2.5	3
149	A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. Journal of Neuroscience Methods, 2015, 255, 66-74.	1.3	71
150	Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity. Zebrafish, 2015, 12, 339-348.	0.5	40
151	Corrigendum to "Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: The utility of behavior-recognition tools to characterize mutant mouse phenotypesâ€; Brain Research Bulletin, 2015, 119, 101-103.	1.4	10
152	Modeling neuropsychiatric spectra to empower translational biological psychiatry. Behavioural Brain Research, 2015, 276, 1-7.	1.2	21
153	Developing better and more valid animal models of brain disorders. Behavioural Brain Research, 2015, 276, 28-31.	1.2	81
154	Molecular psychiatry of zebrafish. Molecular Psychiatry, 2015, 20, 2-17.	4.1	174
155	Cytokine and endocrine parameters in mouse chronic social defeat: Implications for translational â€~cross-domain' modeling of stress-related brain disorders. Behavioural Brain Research, 2015, 276, 84-91.	1.2	38
156	The behavioral effects of acute î"9-tetrahydrocannabinol and heroin (diacetylmorphine) exposure in adult zebrafish. Brain Research, 2014, 1543, 109-119.	1.1	51
157	Zebrafish models for translational neuroscience research: from tank to bedside. Trends in Neurosciences, 2014, 37, 264-278.	4.2	533
158	Aquatic blues: Modeling depression and antidepressant action in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 55, 26-39.	2.5	50
159	Developing zebrafish models of autism spectrum disorder (ASD). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 50, 27-36.	2.5	126
160	Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 2014, 35, 63-75.	4.0	827
161	Anxiolytic drug discovery: what are the novel approaches and how can we improve them?. Expert Opinion on Drug Discovery, 2014, 9, 15-26.	2.5	21
162	Rethinking CNS disorders: time for new drug targets?. Trends in Pharmacological Sciences, 2014, 35, 491-492.	4.0	16

#	Article	IF	Citations
163	Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 55, 67-79.	2.5	23
164	Aquatic toxicology of fluoxetine: Understanding the knowns and the unknowns. Aquatic Toxicology, 2014, 156, 269-273.	1.9	44
165	Testing anxiolytic drugs in the C57BL/6J mouse strain. Journal of Pharmacological and Toxicological Methods, 2014, 69, 205-207.	0.3	9
166	Gaining translational momentum: More zebrafish models for neuroscience research. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 55, 1-6.	2.5	178
167	Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochemistry International, 2014, 66, 15-26.	1.9	77
168	Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement. Journal of Spatial Information Science, 2014, , .	1.1	14
169	Perspectives on Zebrafish Models of Hallucinogenic Drugs and Related Psychotropic Compounds. ACS Chemical Neuroscience, 2013, 4, 1137-1150.	1.7	54
170	Psychopharmacological effects of acute exposure to kynurenic acid (KYNA) in zebrafish. Pharmacology Biochemistry and Behavior, 2013, 108, 54-60.	1.3	24
171	Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochemistry International, 2013, 62, 893-902.	1.9	67
172	Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Research, 2013, 1527, 108-116.	1.1	69
173	Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research. Brain Research Bulletin, 2013, 98, 145-154.	1.4	14
174	Developing â€ïintegrative' zebrafish models of behavioral and metabolic disorders. Behavioural Brain Research, 2013, 256, 172-187.	1.2	48
175	Multipotent Stromal Cells Alleviate Inflammation, Neuropathology, and Symptoms Associated with Globoid Cell Leukodystrophy in the Twitcher Mouse. Stem Cells, 2013, 31, 1523-1534.	1.4	22
176	Age of the Donor Reduces the Ability of Human Adipose-Derived Stem Cells to Alleviate Symptoms in the Experimental Autoimmune Encephalomyelitis Mouse Model. Stem Cells Translational Medicine, 2013, 2, 797-807.	1.6	72
177	Constructing the habituome for phenotype-driven zebrafish research. Behavioural Brain Research, 2013, 236, 110-117.	1.2	41
178	Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behavioural Brain Research, 2013, 236, 258-269.	1.2	98
179	Controlled substances and innovation of biomedicine: a preclinical perspective. Nature Reviews Neuroscience, 2013, 14, 877-877.	4.9	8
180	Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond. Zebrafish, 2013, 10, 70-86.	0.5	795

#	Article	IF	CITATIONS
181	High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behavioural Brain Research, 2013, 236, 35-47.	1.2	11
182	Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 40, 312-325.	2.5	13
183	Behavioral phenotyping of mouse grooming and barbering. , 2013, , 195-204.		1
184	Time to recognize zebrafish â€~affective' behavior. Behaviour, 2012, 149, 1019-1036.	0.4	59
185	Neurocognitive Effects of Chemotherapy and Endocrine Therapies in the Treatment of Breast Cancer: Recent Perspectives. Cancer Investigation, 2012, 30, 135-148.	0.6	33
186	Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology, 2012, 62, 135-143.	2.0	315
187	Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 37, 194-202.	2.5	94
188	Assessing Social Behavior Phenotypes in Adult Zebrafish: Shoaling, Social Preference, and Mirror Biting Tests. Neuromethods, 2012, , 231-246.	0.2	46
189	Assessing Habituation Phenotypes in Adult Zebrafish: Intra- and Inter-Trial Habituation in the Novel Tank Test. Neuromethods, 2012, , 273-285.	0.2	9
190	Assessing Startle Responses and Their Habituation in Adult Zebrafish. Neuromethods, 2012, , 287-300.	0.2	10
191	Assessing Epilepsy-Related Behavioral Phenotypes in Adult Zebrafish. Neuromethods, 2012, , 313-322.	0.2	8
192	Utilizing the Zebrafish Neurophenome Project (ZNP) Database for Analyses of Complex Neurophenotypes in Zebrafish Models. Neuromethods, 2012, , 343-353.	0.2	0
193	Automated high-throughput neurophenotyping of zebrafish social behavior. Journal of Neuroscience Methods, 2012, 210, 266-271.	1.3	144
194	Perspectives of zebrafish models of epilepsy: What, how and where next?. Brain Research Bulletin, 2012, 87, 135-143.	1.4	90
195	Behavioral and physiological effects of RDX on adult zebrafish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2012, 155, 33-38.	1.3	31
196	Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: The utility of behavior-recognition tools to characterize mutant mouse phenotypes. Brain Research Bulletin, 2012, 89, 168-176.	1.4	21
197	The Zebrafish Neurophenome Database (ZND): A Dynamic Open-Access Resource for Zebrafish Neurophenotypic Data. Zebrafish, 2012, 9, 8-14.	0.5	16
198	The Developing Utility of Zebrafish Models for Cognitive Enhancers Research. Current Neuropharmacology, 2012, 10, 263-271.	1.4	56

#	Article	IF	CITATIONS
199	Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Research, 2012, 1451, 44-52.	1.1	103
200	Effects of the hallucinogenic drugs mescaline, phencyclidine and psilocybin on zebrafish behavior and physiology. FASEB Journal, 2012, 26, 1043.3.	0.2	0
201	SERT and BDNF heterozygous knockout mice display alterations in grooming activity and syntax. FASEB Journal, 2012, 26, 1042.9.	0.2	О
202	The Zebrafish Neurophenome Database (ZND): a dynamic openâ€access resource for zebrafish neuroscience research. FASEB Journal, 2012, 26, 1042.10.	0.2	1
203	Developing zebrafish models of depression?: Effects of reserpine on zebrafish behavior and physiology. FASEB Journal, 2012, 26, 1045.12.	0.2	3
204	Experimental models for anxiolytic drug discovery in the era ofomesandomics. Expert Opinion on Drug Discovery, 2011, 6, 755-769.	2.5	12
205	Zebrafish models to study drug abuse-related phenotypes. Reviews in the Neurosciences, 2011, 22, 95-105.	1.4	127
206	Measuring Endocrine (Cortisol) Responses of Zebrafish to Stress. Neuromethods, 2011, , 135-142.	0.2	26
207	Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: The utility of fish models to study stress–memory interplay. Behavioural Processes, 2011, 87, 224-230.	0.5	68
208	Effects of piracetam on behavior and memory in adult zebrafish. Brain Research Bulletin, 2011, 85, 58-63.	1.4	70
209	Towards high-throughput phenotyping of complex patterned behaviors in rodents: Focus on mouse self-grooming and its sequencing. Behavioural Brain Research, 2011, 225, 426-431.	1.2	27
210	Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1421-1431.	2.5	193
211	Novel experimental models and paradigms for neuropsychiatric disorders: Editorial. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1355-1356.	2.5	9
212	Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior. PLoS ONE, 2011, 6, e17597.	1.1	244
213	Behavioral effects of MDMA ( ecstasy') on adult zebrafish. Behavioural Pharmacology, 2011, 22, 275-280.	0.8	55
214	Domain interplay in mice and men: New possibilities for the "natural kinds―theory of emotion. New Ideas in Psychology, 2011, 29, 49-56.	1.2	7
215	Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicology and Teratology, 2011, 33, 658-667.	1.2	139
216	Modeling Stress and Anxiety in Zebrafish. Neuromethods, 2011, , 73-88.	0.2	33

#	Article	IF	CITATIONS
217	Video-Aided Analysis of Zebrafish Locomotion and Anxiety-Related Behavioral Responses. Neuromethods, 2011 , , $1\text{-}14$.	0.2	36
218	Neurophenotyping of Adult Zebrafish Using the Light/Dark Box Paradigm. Neuromethods, 2011, , 157-167.	0.2	44
219	Intraperitoneal Injection as a Method of Psychotropic Drug Delivery in Adult Zebrafish. Neuromethods, 2011, , 169-179.	0.2	10
220	Assessing the Maximum Predictive Validity for Neuropharmacological Anxiety Screening Assays Using Zebrafish. Neuromethods, 2011, , 181-190.	0.2	2
221	Deconstructing Adult Zebrafish Behavior with Swim Trace Visualizations. Neuromethods, 2011, , 191-201.	0.2	14
222	Phenotyping of Zebrafish Homebase Behaviors in Novelty-Based Tests. Neuromethods, 2011, , 143-155.	0.2	19
223	Modeling Mouse Anxiety and Sensorimotor Integration: Neurobehavioral Phenotypes in the Suok Test. Neuromethods, $2011, 61-81$.	0.2	0
224	Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology. Behavioural Pharmacology, 2010, 21, 420-426.	0.8	31
225	Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Research, 2010, 1348, 209-215.	1.1	114
226	Qui non proficit, deficit: Experimental models for †integrative' research of affective disorders. Journal of Affective Disorders, 2010, 121, 1-9.	2.0	30
227	Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nature Protocols, 2010, 5, 1786-1799.	5.5	522
228	Phenotyping and genetics of rodent grooming and barbering: utility for experimental neuroscience research., 2010,, 46-65.		2
229	Preface: Focus on the serotonin transporter. , 2010, , ix-xii.		0
230	The role of the serotonin transporter in reward mechanisms. , 2010, , 244-269.		0
231	Developmental roles for the serotonin transporter. , 2010, , 78-104.		0
232	Presynaptic adaptive responses to constitutive versus adult pharmacologic inhibition of serotonin uptake., 2010,, 1-42.		1
233	Cellular and molecular alterations in animal models of serotonin transporter disruption: a comparison between developmental and adult stages. , 2010, , 43-77.		1
234	SERT models of emotional dysregulation. , 2010, , 105-134.		2

#	Article	IF	Citations
235	The serotonin transporter and animal models of depression. , 2010, , 135-169.		O
236	The serotonin transporter knock-out rat: a review. , 2010, , 170-213.		6
237	Wistar–Zagreb 5HT rats: a rodent model with constitutional upregulation/downregulation of serotonin transporter. , 2010, , 214-243.		6
238	The role of serotonin transporter in modeling psychiatric disorders: focus on depression, emotion regulation, and the social brain., 2010, , 308-352.		3
239	Modeling SERT $\tilde{A}-$ BDNF interactions in brain disorders: single BDNF gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities in serotonin transporter knock-out mice., 2010,, 270-287.		0
240	Experimental Models of Anxiety for Drug Discovery and Brain Research. Methods in Molecular Biology, 2010, 602, 299-321.	0.4	44
241	25-Hydroxyvitamin D3 is an agonistic vitamin D receptor ligand. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 162-170.	1.2	130
242	Homebase behavior of zebrafish in novelty-based paradigms. Behavioural Processes, 2010, 85, 198-203.	0.5	93
243	Modeling withdrawal syndrome in zebrafish. Behavioural Brain Research, 2010, 208, 371-376.	1.2	162
244	Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behavioural Brain Research, 2010, 208, 450-457.	1.2	366
245	The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. Behavioural Brain Research, 2010, 208, 553-559.	1.2	83
246	Characterization of behavioral and endocrine effects of LSD on zebrafish. Behavioural Brain Research, 2010, 214, 277-284.	1.2	217
247	Mouse Models for Studying Depression-Like States and Antidepressant Drugs. Methods in Molecular Biology, 2010, 602, 267-282.	0.4	17
248	Genetic Animal Models of Depression. Neuromethods, 2010, , 191-200.	0.2	5
249	Genetic Animal Models of Anxiety. Neuromethods, 2010, , 179-189.	0.2	0
250	The Utility of Genetically Modified Animals in Modeling OCD-Spectrum Disorders. Neuromethods, 2010, , 139-149.	0.2	0
251	Mutant and Transgenic Zebrafish in Modeling Neurobehavioral Disorders. Neuromethods, 2010, , 3-12.	0.2	1
252	Understanding zebrafish habituation responses to novelty. FASEB Journal, 2010, 24, 811.8.	0.2	0

#	Article	IF	Citations
253	The Effects of Chronic Social Defeat Stress on Mouse Grooming Behavior Patterning. FASEB Journal, 2010, 24, 811.3.	0.2	0
254	Cytokine profiling of chronic social defeat in mice. FASEB Journal, 2010, 24, 768.2.	0.2	0
255	Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research, 2009, 205, 38-44.	1.2	1,056
256	Serum cholesterol and expression of ApoAl, LXR \hat{l}^2 and SREBP2 in vitamin D receptor knock-out mice. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 222-226.	1.2	66
257	Vestibular dysfunction in vitamin D receptor mutant mice. Journal of Steroid Biochemistry and Molecular Biology, 2009, 114, 161-166.	1.2	85
258	Premature aging in vitamin D receptor mutant mice. Journal of Steroid Biochemistry and Molecular Biology, 2009, 115, 91-97.	1.2	119
259	Analysis of Grooming Behavior and Its Utility in Studying Animal Stress, Anxiety, and Depression. Neuromethods, 2009, , 21-36.	0.2	59
260	The regular and light–dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents. Nature Protocols, 2008, 3, 129-136.	5.5	46
261	Perspectives on genetic animal models of serotonin toxicity. Neurochemistry International, 2008, 52, 649-658.	1.9	33
262	Hybridizing behavioral models: A possible solution to some problems in neurophenotyping research?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 1172-1178.	2.5	27
263	Anxiety and otovestibular disorders: Linking behavioral phenotypes in men and mice. Behavioural Brain Research, 2008, 186, 1-11.	1.2	37
264	Domain interplay concept in animal models of neuropsychiatric disorders: A new strategy for high-throughput neurophenotyping research. Behavioural Brain Research, 2008, 188, 243-249.	1.2	66
265	Refining psychiatric genetics: from â€~mouse psychiatry' to understanding complex human disorders. Behavioural Pharmacology, 2008, 19, 377-384.	0.8	29
266	10th Jubilee Multidisciplinary International Conference of Neuroscience and Biological Psychiatry "Stress and Behavior― Neural Plasticity, 2007, 2007, 1-2.	1.0	8
267	Neurosteroid hormone vitamin D and its utility in clinical nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 12-19.	1.3	229
268	The developing use of heterozygous mutant mouse models in brain monoamine transporter research. Trends in Pharmacological Sciences, 2007, 28, 122-127.	4.0	45
269	Influence of paternal genotypes on F1 behaviors: Lessons from several mouse strains. Behavioural Brain Research, 2007, 177, 45-50.	1.2	19
270	Aberrant nest building and prolactin secretion in vitamin D receptor mutant mice. Journal of Steroid Biochemistry and Molecular Biology, 2007, 104, 269-273.	1.2	31

#	Article	IF	Citations
271	Neophobia, sensory and cognitive functions, and hedonic responses in vitamin D receptor mutant mice. Journal of Steroid Biochemistry and Molecular Biology, 2007, 104, 274-280.	1.2	49
272	Brain-Derived Neurotrophic Factor, Serotonin Transporter, and Depression: Comment on Kaufman et al. Biological Psychiatry, 2007, 61, 1112-1113.	0.7	4
273	Neurobiology of Memory and Anxiety: From Genes to Behavior. Neural Plasticity, 2007, 2007, 1-12.	1.0	32
274	Role of GABA in anxiety and depression. Depression and Anxiety, 2007, 24, 495-517.	2.0	416
275	Analyzing grooming microstructure in neurobehavioral experiments. Nature Protocols, 2007, 2, 2538-2544.	5.5	188
276	Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Research, 2007, 1169, 87-97.	1.1	75
277	Behavioral neuroscience, exploration, and K.C. Montgomery's legacy. Brain Research Reviews, 2007, 53, 328-331.	9.1	10
278	The Importance of Cognitive Phenotypes in Experimental Modeling of Animal Anxiety and Depression. Neural Plasticity, 2007, 2007, 1-7.	1.0	49
279	BDNF in Anxiety and Depression. Science, 2006, 312, 1598-1599.	6.0	58
280	Temporal stability of novelty exploration in mice exposed to different open field tests. Behavioural Processes, 2006, 72, 104-112.	0.5	60
281	Increased severity of chemically induced seizures in mice with partially deleted Vitamin D receptor gene. Neuroscience Letters, 2006, 394, 69-73.	1.0	58
282	Behavioural anomalies in mice evoked by "Tokyo―disruption of the Vitamin D receptor gene. Neuroscience Research, 2006, 54, 254-260.	1.0	71
283	Thalamic calcification in vitamin D receptor knockout mice. NeuroReport, 2006, 17, 717-721.	0.6	30
284	Are serotonin transporter knockout mice â€~depressed'?: hypoactivity but no anhedonia. NeuroReport, 2006, 17, 1347-1351.	0.6	77
285	The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. Journal of Neuroscience Methods, 2005, 143, 169-177.	1.3	223
286	Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. European Journal of Pharmacology, 2005, 508, 147-153.	1.7	114
287	ABNORMAL BEHAVIORAL ORGANIZATION OF GROOMING IN MICE LACKING THE VITAMIN D RECEPTOR GENE. Journal of Neurogenetics, 2005, 19, 1-24.	0.6	28
288	Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behavioural Brain Research, 2005, 160, 1-10.	1.2	84

#	Article	IF	CITATIONS
289	Behavioural characterization in rats using the elevated alley Suok test. Behavioural Brain Research, 2005, 165, 52-57.	1.2	13
290	Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Research Bulletin, 2005, 67, 156-160.	1.4	69
291	The Suok ("ropewalkingâ€) murine test of anxiety. Brain Research Protocols, 2005, 14, 87-99.	1.7	29
292	Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Research, 2004, 1028, 75-82.	1.1	67
293	Impaired motor performance in mice lacking neurosteroid vitamin D receptors. Brain Research Bulletin, 2004, 64, 25-29.	1.4	67
294	Grooming analysis algorithm for neurobehavioural stress research. Brain Research Protocols, 2004, 13, 151-158.	1.7	221
295	Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neuroscience Letters, 2004, 365, 106-110.	1.0	100
296	Increased anxiety in mice lacking vitamin D receptor gene. NeuroReport, 2004, 15, 1271-1274.	0.6	112
297	Experimental modeling of anxiety and depression. Acta Neurobiologiae Experimentalis, 2004, 64, 439-48.	0.4	63
298	An ethological analysis of barbering behavior., 0,, 184-225.		7
299	Self-grooming as a form of olfactory communication in meadow voles and prairie voles (Microtus) Tj ETQq1 1 0.	784314 rg	;BT ₃ /Overlock
300	Grooming, sequencing, and beyond: how it all began., 0,, 1-18.		0
301	Grooming syntax as a sensitive measure of the effects of subchronic PCP treatment in rats., 0,, 88-107.		0
302	Primate models in serotonin transporter research. , 0, , 288-307.		2
303	Pharmacological characterization of a novel putative nootropic beta-alanine derivative, MB-005, in adult zebrafish. Journal of Psychopharmacology, 0, , 026988112210981.	2.0	1