Laura A Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5996057/publications.pdf

Version: 2024-02-01

		1040056 1199594	
17	753	9	12
papers	citations	h-index	g-index
17	17	17	1488
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Materials, 2016, 15, 669-678.	27.5	471
2	Generic, Anthraceneâ€Based Hydrogel Crosslinkers for Photoâ€controllable Drug Delivery. Macromolecular Bioscience, 2011, 11, 988-998.	4.1	65
3	Photoresponsive PEG-Anthracene Grafted Hyaluronan as a Controlled-Delivery Biomaterial. Biomacromolecules, 2011, 12, 923-932.	5.4	45
4	Photosensitive controlled release with polyethylene glycol–anthracene modified alginate. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 304-313.	4.3	37
5	The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation. Biomaterials, 2017, 118, 74-83.	11.4	31
6	Cell Interactions with Vascular Regenerative MAAâ€Based Materials in the Context of Wound Healing. Advanced Healthcare Materials, 2015, 4, 2375-2387.	7.6	25
7	Responding to Change: Thermo- and Photoresponsive Polymers as Unique Biomaterials. Critical Reviews in Biomedical Engineering, 2010, 38, 487-509.	0.9	25
8	The effect of methacrylic acid in smooth coatings on dTHP1 and HUVEC gene expression. Biomaterials Science, 2014, 2, 1768-1778.	5.4	16
9	Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10673-10678.	7.1	16
10	Angiogenic Biomaterials to Promote Tissue Vascularization and Integration. Israel Journal of Chemistry, 2013, 53, 637-645.	2.3	10
11	DNA-crosslinked alginate and layered microspheres to modulate the release of encapsulated FITC-dextran. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 313-322.	4.3	5
12	Modeling the Effects of Disease, Drug Properties, and Material on Drug Transport From Intraocular Lenses. Translational Vision Science and Technology, 2022, 11, 14.	2.2	4
13	The effects of surface chemistry on the accumulation of extracellular traps on poly(methyl) Tj ETQq1 1 0.784314	1 rgBT /Ov	erlgck 10 Tf 5
14	Stimuli-Responsive Polymers. Polymers and Polymeric Composites, 2018, , 1-24.	0.6	0
15	Hyaluronic Acid and Poly-l-Lysine Layers on Calcium Alginate Microspheres to Modulate the Release of Encapsulated FITC-Dextran. Journal of Pharmaceutical Sciences, 2021, 110, 2472-2478.	3.3	0
16	Photoresponsive Polymers for Ocular Drug Delivery. , 2012, , 383-400.		0
17	Stimuli-Responsive Polymers. Polymers and Polymeric Composites, 2019, , 103-126.	0.6	0