
Sonia Caprio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5995705/publications.pdf Version: 2024-02-01

SONIA CADDIO

#	Article	IF	CITATIONS
1	Relation of glomerular filtration to insulin resistance and related risk factors in obese children. International Journal of Obesity, 2022, 46, 374-380.	3.4	4
2	Growth differentiation factor 15 (GDF15) is associated with non-alcoholic fatty liver disease (NAFLD) in youth with overweight or obesity. Nutrition and Diabetes, 2022, 12, 9.	3.2	11
3	Transcriptomic profiling of a multiethnic pediatric NAFLD cohort reveals genes and pathways associated with disease. Hepatology Communications, 2022, 6, 1598-1610.	4.3	6
4	A low nâ€6 to nâ€3 polyunsaturated fatty acid ratio diet improves hyperinsulinaemia by restoring insulin clearance in obese youth. Diabetes, Obesity and Metabolism, 2022, 24, 1267-1276.	4.4	8
5	Lack of Evidence for a Causal Role of Hyperinsulinemia in the Progression of Obesity in Children and Adolescents: A Longitudinal Study. Diabetes Care, 2022, 45, 1400-1407.	8.6	5
6	Pediatric Preventive Care in Middle-High Resource Countries—The Padova Chart for Health in Children. Frontiers in Pediatrics, 2022, 10, 803323.	1.9	2
7	Deterioration of glycemic control in youth-onset type 2 diabetes: what are the early and late predictors?. Journal of Clinical Endocrinology and Metabolism, 2022, , .	3.6	8
8	American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings. Endocrine Practice, 2022, 28, 528-562.	2.1	323
9	Understanding the Pathophysiology of Youth-Onset Type 2 Diabetes (T2D): Importance of Alpha-Cell Function. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3957-e3958.	3.6	1
10	lgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans. Diabetologia, 2022, 65, 1398-1411.	6.3	4
11	rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. Journal of Hepatology, 2021, 74, 20-30.	3.7	77
12	OGTT Glucose Response Curves, Insulin Sensitivity, and β-Cell Function in RISE: Comparison Between Youth and Adults at Randomization and in Response to Interventions to Preserve β-Cell Function. Diabetes Care, 2021, 44, 817-825.	8.6	20
13	Nonalcoholic Fatty Liver Disease (NAFLD) Association with Pediatric Diabetes. Contemporary Endocrinology, 2021, , 181-189.	0.1	Ο
14	The PRKAR1B p.R115K Variant is Associated with Lipoprotein Profile in African American Youth with Metabolic Challenges. Journal of the Endocrine Society, 2021, 5, bvab071.	0.2	3
15	Precision and accuracy of hyperglycemic clamps in a multicenter study. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E797-E807.	3.5	4
16	Early Impairment of Insulin Sensitivity, β-Cell Responsiveness, and Insulin Clearance in Youth with Stage 1 Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2660-2669.	3.6	8
17	Liver Fat Reduction After Gastric Banding and Associations with Changes in Insulin Sensitivity and β ell Function. Obesity, 2021, 29, 1155-1163.	3.0	2
18	Hyperglucagonemia Does Not Explain the β-Cell Hyperresponsiveness and Insulin Resistance in Dysglycemic Youth Compared With Adults: Lessons From the RISE Study. Diabetes Care, 2021, 44, 1961-1969.	8.6	9

Sonia Caprio

#	Article	IF	CITATIONS
19	Baseline Predictors of Glycemic Worsening in Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study. Diabetes Care, 2021, 44, 1938-1947.	8.6	16
20	Effect of Medical and Surgical Interventions on α-Cell Function in Dysglycemic Youth and Adults in the RISE Study. Diabetes Care, 2021, 44, 1948-1960.	8.6	2
21	Long-Term Complications in Youth-Onset Type 2 Diabetes. New England Journal of Medicine, 2021, 385, 416-426.	27.0	234
22	Genome-wide Association Study of Lipid Traits in Youth With Type 2 Diabetes. Journal of the Endocrine Society, 2021, 5, bvab139.	0.2	2
23	Differential loss of β-cell function in youth vs. adults following treatment withdrawal in the Restoring Insulin Secretion (RISE) study. Diabetes Research and Clinical Practice, 2021, 178, 108948.	2.8	15
24	<i>CIDEA</i> expression in SAT from adolescent girls with obesity and unfavorable patterns of abdominal fat distribution. Obesity, 2021, 29, 2068-2080.	3.0	1
25	Withdrawal of medications leads to worsening of <scp>OGTT</scp> parameters in youth with impaired glucose tolerance or <scp>recentlyâ€diagnosed</scp> type 2 diabetes. Pediatric Diabetes, 2020, 21, 1437-1446.	2.9	7
26	A Low ω-6 to ω-3 PUFA Ratio (n–6:n–3 PUFA) Diet to Treat Fatty Liver Disease in Obese Youth. Journal of Nutrition, 2020, 150, 2314-2321.	2.9	52
27	The association between anti-Müllerian hormone and vitamin 25(OH)D serum levels and polycystic ovarian syndrome in adolescent females. Reproductive Biology and Endocrinology, 2020, 18, 118.	3.3	8
28	A Reduced Incretin Effect Mediated by the rs7903146 Variant in the TCF7L2 Gene Is an Early Marker of β-Cell Dysfunction in Obese Youth. Diabetes Care, 2020, 43, 2553-2563.	8.6	10
29	Hepatic fat is a stronger correlate of key clinical and molecular abnormalities than visceral and abdominal subcutaneous fat in youth. BMJ Open Diabetes Research and Care, 2020, 8, e001126.	2.8	15
30	βâ€cells in youth with impaired glucose tolerance or early type 2 diabetes secrete more insulin and are more responsive than in adults. Pediatric Diabetes, 2020, 21, 1421-1429.	2.9	13
31	Glutamate–Serine–Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease. Children, 2020, 7, 270.	1.5	10
32	Intrahepatic fat, irrespective of ethnicity, is associated with reduced endogenous insulin clearance and hepatic insulin resistance in obese youths: A crossâ€sectional and longitudinal study from the <scp>Y</scp> ale <scp>P</scp> ediatric <scp>NAFLD</scp> cohort. Diabetes, Obesity and Metabolism, 2020, 22, 1628-1638.	4.4	26
33	Childhood obesity and the associated rise in cardiometabolic complications. Nature Metabolism, 2020, 2, 223-232.	11.9	92
34	Cardiometabolic risk factor clustering in patients with deficient branchedâ€chain amino acid catabolism: A caseâ€control study. Journal of Inherited Metabolic Disease, 2020, 43, 981-993.	3.6	5
35	Metabolic and Genetic Determinants of Glucose Shape After Oral Challenge in Obese Youths: A Longitudinal Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 534-542.	3.6	8
36	8. Level of Anti-Müllerian Hormone and the Association of Vitamin D Deficiency with Polycystic Ovarian Syndrome in Adolescent Females. Journal of Pediatric and Adolescent Gynecology, 2020, 33, 241-242.	0.7	0

#	Article	IF	CITATIONS
37	Development of a Plasma Screening Panel for Pediatric Nonalcoholic Fatty Liver Disease Using Metabolomics. Hepatology Communications, 2019, 3, 1311-1321.	4.3	31
38	Obesity and insulin sensitivity effects on cardiovascular risk factors: Comparisons of obese dysglycemic youth and adults. Pediatric Diabetes, 2019, 20, 849-860.	2.9	1
39	Fructose Consumption Contributes to Hyperinsulinemia in Adolescents With Obesity Through a GLP-1–Mediated Mechanism. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3481-3490.	3.6	20
40	Lower Insulin Clearance Parallels a Reduced Insulin Sensitivity in Obese Youths and Is Associated With a Decline in β-Cell Function Over Time. Diabetes, 2019, 68, 2074-2084.	0.6	30
41	Oneâ€hour postâ€load plasma glucose predicts progression to prediabetes in a multiâ€ethnic cohort of obese youths. Diabetes, Obesity and Metabolism, 2019, 21, 1191-1198.	4.4	29
42	Association of Habitual Daily Physical Activity With Glucose Tolerance and β-Cell Function in Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes From the Restoring Insulin Secretion (RISE) Study. Diabetes Care, 2019, 42, 1521-1529.	8.6	9
43	Lack of Durable Improvements in β-Cell Function Following Withdrawal of Pharmacological Interventions in Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care, 2019, 42, 1742-1751.	8.6	56
44	Association of Self-Reported Sleep and Circadian Measures With Glycemia in Adults With Prediabetes or Recently Diagnosed Untreated Type 2 Diabetes. Diabetes Care, 2019, 42, 1326-1332.	8.6	47
45	Altered In Vivo Lipid Fluxes and Cell Dynamics in Subcutaneous Adipose Tissues Are Associated With the Unfavorable Pattern of Fat Distribution in Obese Adolescent Girls. Diabetes, 2019, 68, 1168-1177.	0.6	16
46	Relation of the degree of obesity in childhood to adipose tissue insulin resistance. Acta Diabetologica, 2019, 56, 219-226.	2.5	35
47	A low visceral fat proportion, independent of total body fat mass, protects obese adolescent girls against fatty liver and glucose dysregulation: a longitudinal study. International Journal of Obesity, 2019, 43, 673-682.	3.4	30
48	Oxidized Derivatives of Linoleic Acid in Pediatric Metabolic Syndrome: Is Their Pathogenic Role Modulated by the Genetic Background and the Gut Microbiota?. Antioxidants and Redox Signaling, 2019, 30, 241-250.	5.4	30
49	The rs626283 Variant in the MBOAT7 Gene is Associated with Insulin Resistance and Fatty Liver in Caucasian Obese Youth. American Journal of Gastroenterology, 2018, 113, 376-383.	0.4	50
50	Metabolic Features of Nonalcoholic Fatty Liver (NAFL) in Obese Adolescents: Findings From a Multiethnic Cohort. Hepatology, 2018, 68, 1376-1390.	7.3	75
51	Impact of Severe Obesity on Cardiovascular Risk Factors in Youth. Journal of Pediatrics, 2018, 192, 105-114.	1.8	55
52	The "adipose tissue expandability―hypothesis: a potential mechanism for insulin resistance in obese youth. Hormone Molecular Biology and Clinical Investigation, 2018, 33, .	0.7	7
53	Review of methods for measuring βâ€cell function: <scp>D</scp> esign considerations from the <scp>R</scp> estoring <scp>I</scp> nsulin <scp>S</scp> ecretion (<scp>RISE</scp>) <scp>C</scp> onsortium. Diabetes, Obesity and Metabolism, 2018, 20, 14-24.	4.4	71
54	Predictors of responses to clinicâ€based childhood obesity care. Pediatric Diabetes, 2018, 19, 1351-1356.	2.9	12

#	Article	IF	CITATIONS
55	Impact of Insulin and Metformin Versus Metformin Alone on β-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care, 2018, 41, 1717-1725.	8.6	112
56	Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: I. Observations Using the Hyperglycemic Clamp. Diabetes Care, 2018, 41, 1696-1706.	8.6	127
57	Triglycerideâ€rich very lowâ€density lipoproteins (VLDL) are independently associated with insulin secretion in a multiethnic cohort of adolescents. Diabetes, Obesity and Metabolism, 2018, 20, 2905-2910.	4.4	16
58	Trajectories of changes in glucose tolerance in a multiethnic cohort of obese youths: an observational prospective analysis. The Lancet Child and Adolescent Health, 2018, 2, 726-735.	5.6	35
59	Menstrual Dysfunction in Girls From the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2309-2318.	3.6	20
60	Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation. Gastroenterology, 2017, 152, 1638-1646.	1.3	105
61	Elevated α-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2473-2481.	3.6	62
62	NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 319-334.	1.8	649
63	The rs7903146 Variant in the <i>TCF7L2</i> Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care, 2017, 40, 1082-1089.	8.6	50
64	Prediabetes in youths: mechanisms and biomarkers. The Lancet Child and Adolescent Health, 2017, 1, 240-248.	5.6	46
65	Adiponectin, Insulin Sensitivity, β-Cell Function, and Racial/Ethnic Disparity in Treatment Failure Rates in TODAY. Diabetes Care, 2017, 40, 85-93.	8.6	34
66	A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease. Nutrients, 2017, 9, 642.	4.1	92
67	Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: A multiethnic study. Hepatology, 2016, 63, 117-125.	7.3	106
68	Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents. Diabetes, 2016, 65, 1929-1939.	0.6	69
69	MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nature Communications, 2016, 7, 12639.	12.8	66
70	Adipose Insulin Resistance in Obese Adolescents Across the Spectrum of Glucose Tolerance. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2423-2431.	3.6	60
71	Relationship Between Parental Diabetes and Presentation of Metabolic and Glycemic Function in Youth With Type 2 Diabetes: Baseline Findings From the TODAY Trial. Diabetes Care, 2016, 39, 110-117.	8.6	40
72	Caspase-12, but Not Caspase-11, Inhibits Obesity and Insulin Resistance. Journal of Immunology, 2016, 196, 437-447.	0.8	16

#	Article	IF	CITATIONS
73	Weight Gain and Metabolic Consequences of Risperidone in Young Children With Autism Spectrum Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 415-423.	0.5	61
74	A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents. Diabetes, 2016, 65, 610-618.	0.6	84
75	Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. Journal of Clinical Investigation, 2016, 126, 859-864.	8.2	377
76	Metabolic syndrome is common and persistent in youth-onset type 2 diabetes: Results from the TODAY clinical trial. Obesity, 2015, 23, 1357-1361.	3.0	26
77	Glucose Effectiveness in Obese Children: Relation to Degree of Obesity and Dysglycemia. Diabetes Care, 2015, 38, 689-695.	8.6	29
78	Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes. Cell, 2015, 160, 745-758.	28.9	547
79	Quantification of 1H NMR spectra from human plasma. Metabolomics, 2015, 11, 1702-1707.	3.0	19
80	Hepatic De Novo Lipogenesis in Obese Youth Is Modulated by a Common Variant in the GCKR Gene. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1125-E1132.	3.6	70
81	Reversal of Early Abnormalities in Glucose Metabolism in Obese Youth: Results of an Intensive Lifestyle Randomized Controlled Trial. Diabetes Care, 2014, 37, 317-324.	8.6	111
82	A low disposition index in adolescent offspring of mothers with gestational diabetes: a risk marker for the development of impaired glucose tolerance in youth. Diabetologia, 2014, 57, 2413-2420.	6.3	50
83	Oxidized Fatty Acids: A Potential Pathogenic Link Between Fatty Liver and Type 2 Diabetes in Obese Adolescents?. Antioxidants and Redox Signaling, 2014, 20, 383-389.	5.4	36
84	Co-occurrence of Risk Alleles in or Near Genes Modulating Insulin Secretion Predisposes Obese Youth to Prediabetes. Diabetes Care, 2014, 37, 475-482.	8.6	30
85	The many faces of diabetes: a disease with increasing heterogeneity. Lancet, The, 2014, 383, 1084-1094.	13.7	497
86	Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity. Diabetes Care, 2014, 37, 3061-3068.	8.6	64
87	Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in obese adolescents: A looming marker of cardiac dysfunction. Hepatology, 2014, 59, 372-374.	7.3	12
88	Reliable Assessment of Insulin Resistance in Children. Current Cardiovascular Risk Reports, 2013, 7, 256-260.	2.0	1
89	Progression of Î ² -Cell Dysfunction in Obese Youth. Current Diabetes Reports, 2013, 13, 89-95.	4.2	11
90	Circulating Levels of FGF-21 in Obese Youth: Associations With Liver Fat Content and Markers of Liver Damage. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2993-3000.	3.6	89

#	Article	IF	CITATIONS
91	The Association Between Hepatic Fat Content and Liver Injury in Obese Children and Adolescents. Diabetes Care, 2013, 36, 1353-1360.	8.6	37
92	Longitudinal Effects of MRI-Measured Hepatic Steatosis on Biomarkers of Glucose Homeostasis and Hepatic Apoptosis in Obese Youth. Diabetes Care, 2013, 36, 130-136.	8.6	33
93	Decreased Transcription of ChREBP-α/β Isoforms in Abdominal Subcutaneous Adipose Tissue of Obese Adolescents With Prediabetes or Early Type 2 Diabetes. Diabetes, 2013, 62, 837-844.	0.6	93
94	Oxidized metabolites of linoleic acid as biomarkers of liver injury in nonalcoholic steatohepatitis. Clinical Lipidology, 2013, 8, 411-418.	0.4	27
95	Evidence for Early Defects in Insulin Sensitivity and Secretion Before the Onset of Glucose Dysregulation in Obese Youths. Diabetes, 2012, 61, 606-614.	0.6	128
96	Development of Type 2 Diabetes Mellitus in the Obese Adolescent:A Growing Challenge. Endocrine Practice, 2012, 18, 791-795.	2.1	30
97	Calories from Soft Drinks — Do They Matter?. New England Journal of Medicine, 2012, 367, 1462-1463.	27.0	39
98	Hepatic Fat Accumulation Is Modulated by the Interaction between the rs738409 Variant in the PNPLA3 Gene and the Dietary Omega6/Omega3 PUFA Intake. PLoS ONE, 2012, 7, e37827.	2.5	94
99	Insulin Resistance. Journal of Pediatrics, 2012, 161, 11-15.	1.8	29
100	The Oral Disposition Index: A Valuable Estimate of β-Cell Function in Obese Youth. Journal of Pediatrics, 2012, 161, 3-4.	1.8	10
101	Determinants of glycemic control in youth with type 2 diabetes at randomization in the TODAY study. Pediatric Diabetes, 2012, 13, 376-383.	2.9	44
102	Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology, 2012, 55, 781-789.	7.3	205
103	The 9th Annual World Congress on the Insulin Resistance Syndrome Pediatric Insulin Resistance. Los Angeles, CA. (November 3-5, 2011). Pediatric Endocrinology Reviews, 2012, 9, 682-4.	1.2	1
104	Rosiglitazone Improves Glucose Metabolism in Obese Adolescents With Impaired Glucose Tolerance: A Pilot Study. Obesity, 2011, 19, 94-99.	3.0	15
105	SirT1 Regulates Adipose Tissue Inflammation. Diabetes, 2011, 60, 3235-3245.	0.6	261
106	The Triglyceride-to-HDL Cholesterol Ratio. Diabetes Care, 2011, 34, 1869-1874.	8.6	240
107	Basal α-Cell Up-Regulation in Obese Insulin-Resistant Adolescents. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 91-97.	3.6	34
108	Utility of Hemoglobin A1c for Diagnosing Prediabetes and Diabetes in Obese Children and Adolescents. Diabetes Care, 2011, 34, 1306-1311.	8.6	188

#	Article	IF	CITATIONS
109	Long-term Results of an Obesity Program in an Ethnically Diverse Pediatric Population. Pediatrics, 2011, 127, 402-410.	2.1	173
110	A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology, 2010, 52, 1281-1290.	7.3	195
111	Central Role of Fatty Liver in the Pathogenesis of Insulin Resistance in Obese Adolescents. Diabetes Care, 2010, 33, 1817-1822.	8.6	187
112	Ethnic differences in lipoprotein subclasses in obese adolescents: importance of liver and intraabdominal fat accretion. American Journal of Clinical Nutrition, 2010, 92, 500-508.	4.7	59
113	Cellularity and Adipogenic Profile of the Abdominal Subcutaneous Adipose Tissue From Obese Adolescents: Association With Insulin Resistance and Hepatic Steatosis. Diabetes, 2010, 59, 2288-2296.	0.6	117
114	New Ways to Overcome Old Barriers: Engaging Pediatricians and Primary Care Physicians in Obesity Prevention and Intervention. Childhood Obesity, 2010, 6, 240-246.	1.5	3
115	Effect of a Successful Intensive Lifestyle Program on Insulin Sensitivity and Glucose Tolerance in Obese Youth. Diabetes Care, 2009, 32, 45-47.	8.6	35
116	How Do We Define Cure of Diabetes?. Diabetes Care, 2009, 32, 2133-2135.	8.6	852
117	Primary Defects in β-Cell Function Further Exacerbated by Worsening of Insulin Resistance Mark the Development of Impaired Glucose Tolerance in Obese Adolescents. Diabetes Care, 2009, 32, 456-461.	8.6	115
118	Glucose dysregulation and hepatic steatosis in obese adolescents: Is there a link?. Hepatology, 2009, 49, 1896-1903.	7.3	144
119	Reply:. Hepatology, 2009, 50, 329-329.	7.3	0
120	Obesity dynamics and cardiovascular risk factor stability in obese adolescents. Pediatric Diabetes, 2009, 10, 360-367.	2.9	49
121	Increased Prevalence of Gastroesophageal Reflux Symptoms in Obese Children Evaluated in an Academic Medical Center. Journal of Clinical Gastroenterology, 2009, 43, 410-413.	2.2	48
122	Influence of Race, Ethnicity, and Culture on Childhood Obesity: Implications for Prevention and Treatment. Obesity, 2008, 16, 2566-2577.	3.0	112
123	Short-term metabolic and cardiovascular effects of metformin in markedly obese adolescents with normal glucose tolerance. Pediatric Diabetes, 2008, 9, 567-576.	2.9	81
124	Influence of Race, Ethnicity, and Culture on Childhood Obesity: Implications for Prevention and Treatment. Diabetes Care, 2008, 31, 2211-2221.	8.6	357
125	Sleep-Disordered Breathing in Children With Metabolic Syndrome: The Role of Leptin and Sympathetic Nervous System Activity and the Effect of Continuous Positive Airway Pressure. Pediatrics, 2008, 122, e634-e642.	2.1	77
126	Prevention and Treatment of Pediatric Obesity: An Endocrine Society Clinical Practice Guideline Based on Expert Opinion. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4576-4599.	3.6	410

#	Article	IF	CITATIONS
127	High Visceral and Low Abdominal Subcutaneous Fat Stores in the Obese Adolescent. Diabetes, 2008, 57, 367-371.	0.6	305
128	Treatment of impaired glucose tolerance in childhood. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 320-321.	2.8	7
129	Metabolic Abnormalities Underlying the Different Prediabetic Phenotypes in Obese Adolescents. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1767-1773.	3.6	103
130	Obesity and Sex Steroid Changes across Puberty: Evidence for Marked Hyperandrogenemia in Pre- and Early Pubertal Obese Girls. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 430-436.	3.6	213
131	Effects of a Weight Management Program on Body Composition and Metabolic Parameters in Overweight Children. JAMA - Journal of the American Medical Association, 2007, 297, 2697.	7.4	458
132	Degree of Obesity and Glucose Allostasis Are Major Effectors of Glucose Tolerance Dynamics in Obese Youth. Diabetes Care, 2007, 30, 1845-1850.	8.6	41
133	Intrahepatic Fat Accumulation and Alterations in Lipoprotein Composition in Obese Adolescents. Diabetes Care, 2007, 30, 3093-3098.	8.6	123
134	The metabolic syndrome in children and adolescents. Lancet, The, 2007, 369, 2059-2061.	13.7	776
135	Interethnic Differences in Muscle, Liver and Abdominal Fat Partitioning in Obese Adolescents. PLoS ONE, 2007, 2, e569.	2.5	124
136	The metabolic syndrome in children and adolescents ? an IDF consensus report. Pediatric Diabetes, 2007, 8, 299-306.	2.9	1,509
137	Alanine Aminotransferase Levels and Fatty Liver in Childhood Obesity: Associations with Insulin Resistance, Adiponectin, and Visceral Fat. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4287-4294.	3.6	330
138	Adiponectin in Childhood and Adolescent Obesity and Its Association with Inflammatory Markers and Components of the Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4415-4423.	3.6	156
139	Treating Child Obesity and Associated Medical Conditions. Future of Children, 2006, 16, 209-224.	1.0	33
140	Development of type 2 diabetes in children and adolescents. Current Diabetes Reports, 2006, 6, 182-187.	4.2	23
141	Altered glucose metabolism in obese youth. Pediatric Endocrinology Reviews, 2006, 3, 233-8.	1.2	12
142	Anthropometric and psychosocial changes in obese adolescents enrolled in a Weight Management Program. Journal of the American Dietetic Association, 2005, 105, 364-370.	1.1	62
143	Confronting the Epidemic of Childhood Obesity. Pediatrics, 2005, 115, 494-495.	2.1	31
144	The "Obese Insulin-Sensitive―Adolescent: Importance of Adiponectin and Lipid Partitioning. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3731-3737.	3.6	152

#	Article	IF	CITATIONS
145	β-Cell Function Across the Spectrum of Glucose Tolerance in Obese Youth. Diabetes, 2005, 54, 1735-1743.	0.6	149
146	Predictors of Changes in Glucose Tolerance Status in Obese Youth. Diabetes Care, 2005, 28, 902-909.	8.6	334
147	The Normal Glucose Tolerance Continuum in Obese Youth: Evidence for Impairment in β-Cell Function Independent of Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 747-754.	3.6	81
148	Validation of Insulin Sensitivity Indices from Oral Glucose Tolerance Test Parameters in Obese Children and Adolescents. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1096-1101.	3.6	323
149	A tale of twins and insulin resistance. Journal of Pediatrics, 2004, 144, 567-568.	1.8	2
150	Obesity and the Metabolic Syndrome in Children and Adolescents. New England Journal of Medicine, 2004, 350, 2362-2374.	27.0	2,821
151	The generation gain. Lancet, The, 2004, 364, 1030.	13.7	Ο
152	Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet, The, 2003, 362, 951-957.	13.7	441
153	Ethics of research involving vulnerable populations. Lancet, The, 2003, 362, 1857-1858.	13.7	5
154	Low Adiponectin Levels in Adolescent Obesity: A Marker of Increased Intramyocellular Lipid Accumulation. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2014-2018.	3.6	172
155	In Situ Evidence That Peripheral Insulin Resistance in Adolescents with Poorly Controlled Type 1 Diabetes Is Associated with Impaired Suppression of Lipolysis: A Microdialysis Study. Pediatric Research, 2003, 53, 830-835.	2.3	29
156	Do Sensor Glucose Levels Accurately Predict Plasma Glucose Concentrations During Hypoglycemia and Hyperinsulinemia?. Diabetes Care, 2002, 25, 889-893.	8.6	156
157	Assessment of Skeletal Muscle Triglyceride Content by 1H Nuclear Magnetic Resonance Spectroscopy in Lean and Obese Adolescents. Diabetes, 2002, 51, 1022-1027.	0.6	440
158	Prevalence of Impaired Glucose Tolerance among Children and Adolescents with Marked Obesity. New England Journal of Medicine, 2002, 346, 802-810.	27.0	1,493
159	Insulin resistance in childhood obesity. Journal of Pediatric Endocrinology and Metabolism, 2002, 15 Suppl 1, 487-92.	0.9	41
160	Changes in body composition after a 12-wk aerobic exercise program in obese boys. Pediatric Diabetes, 2000, 1, 61-65.	2.9	39
161	Augmentation of Alimentary Insulin Secretion despite Similar Gastric Inhibitory Peptide (GIP) Responses in Juvenile Obesity. Pediatric Research, 2000, 47, 628-633.	2.3	16
162	Changes in Free Insulin-Like Growth Factor-1 and Leptin Concentrations during Acute Metabolic Decompensation in Insulin Withdrawn Patients with Type 1 Diabetes1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2324-2328.	3.6	32

Sonia Caprio

#	Article	IF	CITATIONS
163	Relationship between abdominal visceral fat and metabolic risk factors in obese adolescents. , 1999, 11, 259-266.		34
164	Differences between African American and white girls in the insulin-like growth factor-I and the binding proteins: Importance of insulin resistance and hyperinsulinemia. Journal of Pediatrics, 1999, 135, 270-271.	1.8	6
165	METABOLIC IMPACT OF OBESITY IN CHILDHOOD. Endocrinology and Metabolism Clinics of North America, 1999, 28, 731-747.	3.2	76
166	Effect of insulin on glycerol production in obese adolescents. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E737-E743.	3.5	32
167	Decreased Insulin Sensitivity and Compensatory Hyperinsulinemia after Hormone Treatment in Children with Short Stature ¹ . Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3234-3238.	3.6	42
168	Acute Incretin Response to Oral Glucose Is Associated with Stimulation of Gastric Inhibitory Polypeptide, Not Glucagon-Like Peptide in Young Subjects. Pediatric Research, 1997, 41, 364-367.	2.3	9
169	Gender influences counterregulatory hormone responses to hypoglycemia. Metabolism: Clinical and Experimental, 1993, 42, 1568-1572.	3.4	69
170	Correction of Hyperinsulinemia by Glyburide Treatment in Nondiabetic Patients with Thalassemia Major. Pediatric Research, 1993, 33, 497-500.	2.3	13
171	Effect of growth hormone treatment on hyperinsulinemia associated with turner syndrome. Journal of Pediatrics, 1992, 120, 238-243.	1.8	43
172	Impairment of counterregulatory hormone responses to hypoglycemia in pregnant women with insulin-dependent diabetes mellitus. American Journal of Obstetrics and Gynecology, 1992, 166, 70-77.	1.3	67
173	Insulin Resistance: An Early Metabolic Defect of Turner's Syndrome*. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 832-836.	3.6	114
174	Insulin Resistance of Puberty: a Defect Restricted to Peripheral Glucose Metabolism*. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 277-282.	3.6	290
175	Increased insulin secretion in puberty: A compensatory response to reductions in insulin sensitivity. Journal of Pediatrics, 1989, 114, 963-967.	1.8	294
176	Relationship between changes in glucose production and gluconeogenesis during mild hypoglycemia in humans. Metabolism: Clinical and Experimental, 1988, 37, 707-710.	3.4	18
177	6Ketosis of starvation: A revisit and new perspectives. Clinics in Endocrinology and Metabolism, 1983, 12, 359-379.	1.6	99
178	Mechanistic Insights Into the Heterogeneity of Glucose Response Classes in Youths With Obesity: A Latent Class Trajectory Approach. Diabetes Care, 0, , .	8.6	3