
Carolina Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5995600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Itaconate or how I learned to stop avoiding the study of immunometabolism. PLoS Pathogens, 2022, 18, e1010361.	2.1	8
2	Cryptococcus neoformans <i>-</i> Infected Macrophages Release Proinflammatory Extracellular Vesicles: Insight into Their Components by Multi-omics. MBio, 2021, 12, .	1.8	14
3	Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Frontiers in Genetics, 2021, 12, 648524.	1.1	13
4	Interactions of Extracellular Vesicles from Pathogenic Fungi with Innate Leukocytes. Current Topics in Microbiology and Immunology, 2021, 432, 89-120.	0.7	1
5	CircRNA-1806 Decreases T Cell Apoptosis and Prolongs Survival of Mice After Cryptococcal Infection by Sponging miRNA-126. Frontiers in Microbiology, 2020, 11, 596440.	1.5	4
6	Pathogen and host genetics underpinning cryptococcal disease. Advances in Genetics, 2020, 105, 1-66.	0.8	5
7	Cryptococcus neoformans Secretes Small Molecules That Inhibit IL-1β Inflammasome-Dependent Secretion. Mediators of Inflammation, 2020, 2020, 1-20.	1.4	12
8	Biogenesis and Function of Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria, and Fungi. , 2020, , 47-74.		5
9	Study of Microbial Extracellular Vesicles: Separation by Density Gradients, Protection Assays and Labelling for Live Tracking. Bio-protocol, 2020, 10, e3502.	0.2	3
10	Answers to naysayers regarding microbial extracellular vesicles. Biochemical Society Transactions, 2019, 47, 1005-1012.	1.6	44
11	Kupffer Cells Mediate Systemic Antifungal Immunity. Trends in Immunology, 2019, 40, 1071-1073.	2.9	7
12	Intranasal Inoculation of Cryptococcus neoformans in Mice Produces Nasal Infection with Rapid Brain Dissemination. MSphere, 2019, 4, .	1.3	22
13	Galectin-3 Inhibits Paracoccidioides brasiliensis Growth and Impacts Paracoccidioidomycosis through Multiple Mechanisms. MSphere, 2019, 4, .	1.3	26
14	Integrin β1 Promotes the Interaction of Murine IgG3 with Effector Cells. Journal of Immunology, 2019, 202, 2782-2794.	0.4	10
15	The Still Underestimated Problem of Fungal Diseases Worldwide. Frontiers in Microbiology, 2019, 10, 214.	1.5	268
16	Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. Journal of Biological Chemistry, 2019, 294, 1202-1217.	1.6	108
17	The capsule of <i>Cryptococcus neoformans</i> . Virulence, 2019, 10, 822-831.	1.8	115
			_

18 The enigmatic role of fungal annexins: the case of Cryptococcus neoformans. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

CAROLINA COELHO

#	Article	IF	CITATIONS
19	Conservation of Intracellular Pathogenic Strategy among Distantly Related Cryptococcal Species. Infection and Immunity, 2018, 86, .	1.0	12
20	The Outcome of the <i>Cryptococcus neoformans–</i> Macrophage Interaction Depends on Phagolysosomal Membrane Integrity. Journal of Immunology, 2018, 201, 583-603.	0.4	41
21	Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathogens, 2018, 14, e1006982.	2.1	119
22	Mechanisms of Cryptococcus neoformans-Mediated Host Damage. Frontiers in Immunology, 2018, 9, 855.	2.2	60
23	Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathogens, 2018, 14, e1007144.	2.1	96
24	Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathogens, 2017, 13, e1006763.	2.1	57
25	The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of <i>Cryptococcus neoformans</i> and Impacts Survival in Fungal Infection. Journal of Immunology, 2016, 197, 1252-1261.	0.4	37
26	Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages. Cell, 2016, 166, 991-1003.	13.5	154
27	Cryptococcal therapies and drug targets: the old, the new and the promising. Cellular Microbiology, 2016, 18, 792-799.	1.1	79
28	Neutropenia exacerbates infection by Acinetobacter baumannii clinical isolates in a murine wound model. Frontiers in Microbiology, 2015, 6, 1134.	1.5	22
29	Macrophage Mitochondrial and Stress Response to Ingestion of <i>Cryptococcus neoformans</i> . Journal of Immunology, 2015, 194, 2345-2357.	0.4	44
30	The Intracellular Life of <i>Cryptococcus neoformans</i> . Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 219-238.	9.6	111
31	The Tools for Virulence of Cryptococcus neoformans. Advances in Applied Microbiology, 2014, 87, 1-41.	1.3	63
32	Alcohol Enhances Acinetobacter baumannii-Associated Pneumonia and Systemic Dissemination by Impairing Neutrophil Antimicrobial Activity in a Murine Model of Infection. PLoS ONE, 2014, 9, e95707.	1.1	35
33	Candida albicans CUG Mistranslation Is a Mechanism To Create Cell Surface Variation. MBio, 2013, 4, .	1.8	77
34	Alcohol impairs J774.16 macrophage-like cell antimicrobial functions in <i>Acinetobacter baumannii</i> infection. Virulence, 2013, 4, 467-472.	1.8	26
35	Characterization of a cyclophosphamide-induced murine model of immunosuppression to study Acinetobacter baumannii pathogenesis. Journal of Medical Microbiology, 2013, 62, 1747-1754.	0.7	29
36	Analysis of Cell Cycle and Replication of Mouse Macrophages after <i>In Vivo</i> and <i>In Vitro</i> Cryptococcus neoformans Infection Using Laser Scanning Cytometry. Infection and Immunity, 2012, 80, 1467-1478.	1.0	16