Carla Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/599558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grafting of Poly(tyrosine) by Laccase Improves the Tensile Strength and Anti-shrinkage of Wool. Journal of Natural Fibers, 2022, 19, 10979-10991.	3.1	7
2	Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics, 2022, 14, 303.	4.5	13
3	Evaluation of bamboo water-retting for fiber bundle extraction. Textile Reseach Journal, 2022, 92, 3289-3298.	2.2	2
4	Eco-friendly approach for preparation of hybrid silica aerogel via freeze drying method. Journal of Materials Science, 2022, 57, 7491-7502.	3.7	8
5	Hybrid aerogel composites reinforced with aramid fiber fabric for thermal protection. Journal of Sol-Gel Science and Technology, 2022, 103, 416-424.	2.4	2
6	Chemical modification of lipases: A powerful tool for activity improvement. Biotechnology Journal, 2022, 17, e2100523.	3.5	5
7	Green Extraction of Cork Bioactive Compounds Using Natural Deep Eutectic Mixtures. ACS Sustainable Chemistry and Engineering, 2022, 10, 7974-7989.	6.7	20
8	Highly efficient and durable antibacterial cotton fabrics finished with zwitterionic polysulfobetaine by one-step eco-friendly strategy. Cellulose, 2021, 28, 1139-1152.	4.9	19
9	Insight into the in-situ solvent-free lipase-catalyzed coating on cotton with polyesters. Process Biochemistry, 2021, 102, 82-91.	3.7	3
10	The Structural Properties of Odorants Modulate Their Association to Human Odorant Binding Protein. Biomolecules, 2021, 11, 145.	4.0	4
11	Biotechnological applications of mammalian odorant-binding proteins. Critical Reviews in Biotechnology, 2021, 41, 441-455.	9.0	12
12	Analysis of Adhesion Effect of Solution on Cotton Fibers in Adhesive-aided Ring Spinning. Fibers and Polymers, 2021, 22, 2323-2332.	2.1	0
13	Study on Gathering-and-twisting Mechanism of Fibers and CMC-Na/PAM/PVA Solution Optimization for Enhancing Cotton Yarn Performance by Adhesive-aided Ring Spinning. Fibers and Polymers, 2021, 22, 3490-3500.	2.1	2
14	Chemically Modified Lipase from <i>Thermomyces lanuginosus</i> with Enhanced Esterification and Transesterification Activities. ChemCatChem, 2021, 13, 4524-4531.	3.7	4
15	Carbon Dot–Doped Titanium Dioxide Sheets for the Efficient Photocatalytic Performance of Refractory Pollutants. Frontiers in Chemistry, 2021, 9, 706343.	3.6	8
16	Changing the shape of wool yarns via laccase-mediated grafting of tyrosine. Journal of Biotechnology, 2021, 339, 73-80.	3.8	3
17	High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action Provided by Triboelectric Nanogenerator. Nano-Micro Letters, 2021, 13, 194.	27.0	26
18	A nanoporous Three-dimensional graphene aerogel doped with a carbon quantum Dot-TiO2 composite that exhibits superior activity for the catalytic photodegradation of organic pollutants. Applied Surface Science, 2021, 569, 151116.	6.1	12

#	Article	IF	CITATIONS
19	Established an eco-friendly cotton fabric treating process with enhancing anti-wrinkle performance. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110034.	1.0	5
20	Color matching of vortex spun yarn and ring spun yarn by the composition of dope-dyed fiber. Journal of the Textile Institute, 2020, 111, 172-177.	1.9	2
21	Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Reseach Journal, 2020, 90, 166-178.	2.2	15
22	Poloxamer 407 based-nanoparticles for controlled release of methotrexate. International Journal of Pharmaceutics, 2020, 575, 118924.	5.2	12
23	Production of conductive bacterial cellulose-polyaniline membranes in the presence of metal salts. Textile Reseach Journal, 2020, 90, 1517-1526.	2.2	9
24	Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from <i>Thermomyces lanuginosus</i> . Catalysis Science and Technology, 2020, 10, 5913-5924.	4.1	19
25	α-Chymotrypsin catalyses the synthesis of methotrexate oligomers. Process Biochemistry, 2020, 98, 193-201.	3.7	4
26	Carboxymethyl Cellulose (CMC) as a Template for Laccase-Assisted Oxidation of Aniline. Frontiers in Bioengineering and Biotechnology, 2020, 8, 438.	4.1	10
27	Zein impart hydrophobic and antimicrobial properties to cotton textiles. Reactive and Functional Polymers, 2020, 154, 104664.	4.1	22
28	Public communication by research institutes compared across countries and sciences: Building capacity for engagement or competing for visibility?. PLoS ONE, 2020, 15, e0235191.	2.5	31
29	Release of Fragrances from Cotton Functionalized with Carbohydrate-Binding Module Proteins. ACS Applied Materials & Interfaces, 2019, 11, 28499-28506.	8.0	16
30	Enzyme stabilization for biotechnological applications. , 2019, , 107-131.		3
31	Biosynthesis of polyesters and their application on cellulosic fibers. , 2019, , 49-75.		2
32	α-Chymotrypsin catalysed oligopeptide synthesis for hair modelling. Journal of Cleaner Production, 2019, 237, 117743.	9.3	2
33	Ultrasound-Assisted Encapsulation of Sacha Inchi (Plukenetia volubilis Linneo.) Oil in Alginate-Chitosan Nanoparticles. Polymers, 2019, 11, 1245.	4.5	21
34	Fusion proteins with chromogenic and keratin binding modules. Scientific Reports, 2019, 9, 14044.	3.3	12
35	Crystallin Fusion Proteins Improve the Thermal Properties of Hair. Frontiers in Bioengineering and Biotechnology, 2019, 7, 298.	4.1	7
36	Effect of Additives on the in situ Laccase-Catalyzed Polymerization of Aniline Onto Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 2019, 7, 264.	4.1	9

#	Article	IF	CITATIONS
37	PTS micelles for the delivery of hydrophobic methotrexate. International Journal of Pharmaceutics, 2019, 566, 282-290.	5.2	6
38	Conductive bacterial cellulose by in situ laccase polymerization of aniline. PLoS ONE, 2019, 14, e0214546.	2.5	18
39	Catalytic Activation of Esterases by PEGylation for Polyester Synthesis. ChemCatChem, 2019, 11, 2490-2499.	3.7	11
40	The development of vocabulary and grammar: a longitudinal study of European Portuguese-speaking toddlers. Journal of Child Language, 2019, 46, 653-681.	1.2	5
41	Can Laccase-Assisted Processing Conditions Influence the Structure of the Reaction Products?. Trends in Biotechnology, 2019, 37, 683-686.	9.3	15
42	Strategies for the synthesis of fluorinated polyesters. RSC Advances, 2019, 9, 1799-1806.	3.6	4
43	Functionalization of Bacterial Cellulose Nonwoven by Poly(fluorophenol) to Improve Its Hydrophobicity and Durability. Frontiers in Bioengineering and Biotechnology, 2019, 7, 332.	4.1	18
44	A Facile, Effective Synthesis of Excellent Fluorescent Carbon Dots with Optical Properties. ChemistrySelect, 2019, 4, 12762-12767.	1.5	1
45	Protective Effect of Saccharides on Freeze-Dried Liposomes Encapsulating Drugs. Frontiers in Bioengineering and Biotechnology, 2019, 7, 424.	4.1	45
46	Coloured and low conductive fabrics by in situ laccase-catalysed polymerization. Process Biochemistry, 2019, 77, 77-84.	3.7	12
47	Antimicrobial coating of textiles by laccase in situ polymerization of catechol and p-phenylenediamine. Reactive and Functional Polymers, 2019, 136, 25-33.	4.1	27
48	Light driven PVDF fibers based on photochromic nanosilica@naphthopyran fabricated by wet spinning. Applied Surface Science, 2019, 470, 951-958.	6.1	28
49	"In-situ―lipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol. Process Biochemistry, 2018, 66, 82-88.	3.7	12
50	Absence of Albumin Improves <i>in Vitro</i> Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. Molecular Pharmaceutics, 2018, 15, 527-535.	4.6	12
51	Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 2018, 8, 19.	3.0	26
52	Laccase: a green catalyst for the biosynthesis of poly-phenols. Critical Reviews in Biotechnology, 2018, 38, 294-307.	9.0	134
53	OBP fused with cell-penetrating peptides promotes liposomal transduction. Colloids and Surfaces B: Biointerfaces, 2018, 161, 645-653.	5.0	17
54	Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. Journal of Biotechnology, 2018, 265, 76-85.	3.8	75

#	Article	IF	CITATIONS
55	Practical insights on enzyme stabilization. Critical Reviews in Biotechnology, 2018, 38, 335-350.	9.0	152
56	Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrasonics Sonochemistry, 2018, 40, 587-593.	8.2	22
57	Conductive Cotton by In Situ Laccase-Polymerization of Aniline. Polymers, 2018, 10, 1023.	4.5	19
58	Silkâ€Based Antimicrobial Polymers as a New Platform to Design Drugâ€Free Materials to Impede Microbial Infections. Macromolecular Bioscience, 2018, 18, e1800262.	4.1	24
59	Polymers from Bamboo Extracts Produced by Laccase. Polymers, 2018, 10, 1141.	4.5	9
60	Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express, 2018, 8, 134.	3.0	19
61	Two Engineered OBPs with opposite temperature-dependent affinities towards 1-aminoanthracene. Scientific Reports, 2018, 8, 14844.	3.3	8
62	Ultrasound-assisted biosynthesis of novel methotrexate-conjugates. Ultrasonics Sonochemistry, 2018, 48, 51-56.	8.2	16
63	Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology. Chemical Engineering Journal, 2018, 350, 856-866.	12.7	24
64	The effect of high-energy environments on the structure of laccase-polymerized poly(catechol). Ultrasonics Sonochemistry, 2018, 48, 275-280.	8.2	23
65	Keratinâ€based particles for protection and restoration of hair properties. International Journal of Cosmetic Science, 2018, 40, 408-419.	2.6	19
66	1-Aminoanthracene Transduction into Liposomes Driven by Odorant-Binding Protein Proximity. ACS Applied Materials & Interfaces, 2018, 10, 27531-27539.	8.0	5
67	Eco-friendly and Durable Antibacterial Cotton Fabrics Prepared with Polysulfopropylbetaine. Fibers and Polymers, 2018, 19, 1228-1236.	2.1	9
68	Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. Journal of Cleaner Production, 2018, 202, 792-798.	9.3	17
69	Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder. PLoS ONE, 2018, 13, e0197537.	2.5	12
70	Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers. New Journal of Chemistry, 2017, 41, 3773-3780.	2.8	18
71	Antioxidant cosmetotextiles: Cotton coating with nanoparticles containing vitamin E. Process Biochemistry, 2017, 59, 46-51.	3.7	34
72	PEGylation Greatly Enhances Laccase Polymerase Activity. ChemCatChem, 2017, 9, 3888-3894.	3.7	20

#	Article	IF	CITATIONS
73	Lipase-ultrasound assisted synthesis of polyesters. Ultrasonics Sonochemistry, 2017, 38, 496-502.	8.2	29
74	Ultrasoundâ€assisted swelling of bacterial cellulose. Engineering in Life Sciences, 2017, 17, 1108-1117.	3.6	21
75	Design of protein delivery systems by mimicking extracellular mechanisms for protection of growth factors. Acta Biomaterialia, 2017, 63, 283-293.	8.3	21
76	Oil-based cyclo-oligosaccharide nanodevices for drug encapsulation. Colloids and Surfaces B: Biointerfaces, 2017, 159, 259-267.	5.0	5
77	Proteinâ€based nanoformulations for αâ€tocopherol encapsulation. Engineering in Life Sciences, 2017, 17, 523-527.	3.6	6
78	Enzymatic coating of cotton with poly (ethylene glutarate). Process Biochemistry, 2017, 59, 91-96.	3.7	8
79	Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. RSC Advances, 2016, 6, 90427-90434.	3.6	12
80	The electromagnetic interference shielding performance of continuous carbon fiber composites with different arrangements. Journal of Industrial Textiles, 2016, 46, 45-58.	2.4	19
81	A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. Journal of Liposome Research, 2016, 26, 269-275.	3.3	8
82	Protein Formulations for Emulsions and Solid-in-Oil Dispersions. Trends in Biotechnology, 2016, 34, 496-505.	9.3	18
83	Cutinase promotes dry esterification of cotton cellulose. Biotechnology Progress, 2016, 32, 60-65.	2.6	6
84	Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability properties. Carbohydrate Polymers, 2016, 145, 1-12.	10.2	90
85	Solvents Regulation and Thermodynamic Control the Morphologies of Cu ₂ O Nanocrystals. Integrated Ferroelectrics, 2015, 162, 77-84.	0.7	2
86	Xylanase―and celluloseâ€aided bioprocessing of bamboo. Engineering in Life Sciences, 2015, 15, 605-611.	3.6	3
87	Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase. Applied Microbiology and Biotechnology, 2015, 99, 4225-4235.	3.6	0
88	Enzymatic synthesis of poly(catechin)-antibiotic conjugates: an antimicrobial approach for indwelling catheters. Applied Microbiology and Biotechnology, 2015, 99, 637-651.	3.6	16
89	Following the enzymatic digestion of chondroitin sulfate by a simple GPC analysis. Analytica Chimica Acta, 2015, 885, 207-213.	5.4	19
90	Enzymatic processing of protein-based fibers. Applied Microbiology and Biotechnology, 2015, 99, 10387-10397.	3.6	37

IF # ARTICLE CITATIONS Ultrasound enhanced laccase applications. Green Chemistry, 2015, 17, 1362-1374. Enzymatic biofinishes for synthetic textiles., 2015, , 153-191. 92 8 Stabilization of enzymes in micro-emulsions for ultrasound processes. Biochemical Engineering 3.6 Journal, 2015, 93, 115-118. Assessment of a Protease Inhibitor Peptide for Anti-Ageing. Protein and Peptide Letters, 2015, 22, 94 0.9 3 1041-1049. Electrospinning of polyacrylonitrile nanofibers using strain-hardening spinning solutions. Fibers and Polymers, 2014, 15, 2441-2445. 2.1 Laccase coating of catheters with poly(catechin) for biofilm reduction. Biocatalysis and 96 2.0 12 Biotransformation, 2014, 32, 2-12. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton 8.2 bleaching. Ultrasonics Sonochemistry, 2014, 21, 774-781. Odorant binding proteins: a biotechnological tool for odour control. Applied Microbiology and 98 3.6 26 Biotechnology, 2014, 98, 3629-3638. Growth of photoluminescent Ag₂Se nanowires from a simple precursor solution. CrystEngComm, 2014, 16, 10534-10538. 2.6 Antimicrobial activity and mechanism of PLA/TP composite nanofibrous films. Journal of the Textile 100 1.9 9 Institute, 2014, 105, 196-202. Tunable nano-carriers from clicked glycosaminoglycan block copolymers. Journal of Materials 5.8 23 Chemistry B, 2014, 2, 4177-4184. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection 102 7.3 10 of nitric oxide. Materials Science and Engineering C, 2014, 45, 37-44. A novel xylanase from Streptomyces sp. FA1: Purification, characterization, identification, and 2.6 heterologous expression. Biotechnology and Bioprocess Engineering, 2014, 19, 8-17. Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular 104 4.6 22 Pharmaceutics, 2014, 11, 1479-1488. Ultrasonic pilot-scale reactor for enzymatic bleaching of cotton fabrics. Ultrasonics Sonochemistry, 8.2 2014, 21, 1535-1543. Evaluation of drug release property and blood compatibility of aspirin-loaded electrospun PLA/RSF 106 2.4 37 composite nanofibers. Iranian Polýmer Journal (English Edition), 2013, 22, 729-737. In vitro and computational studies of transdermal perfusion of nanoformulations containing a large 5.0 molecular weight protein. Colloids and Surfaces B: Biointerfaces, 2013, 108, 271-278. Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: A strategy to 108 4.1 26 improve wound healing. Reactive and Functional Polymers, 2013, 73, 1328-1334.

#	Article	IF	CITATIONS
109	Decolourization of paprika dye effluent with hydrogen peroxide produced by glucose oxidase. Biocatalysis and Biotransformation, 2012, 30, 255-259.	2.0	1
110	Molecular recognition of esterase plays a major role on the removal of fatty soils during detergency. Journal of Biotechnology, 2012, 161, 228-234.	3.8	6
111	Bio-processing of bamboo fibres for textile applications: a mini review. Biocatalysis and Biotransformation, 2012, 30, 141-153.	2.0	29
112	Enzymatic colouration with laccase and peroxidases: Recent progress. Biocatalysis and Biotransformation, 2012, 30, 125-140.	2.0	30
113	Bamboo fibre processing: insights into hemicellulase and cellulase substrate accessibility. Biocatalysis and Biotransformation, 2012, 30, 27-37.	2.0	15
114	Engineered <i>Thermobifida fusca</i> cutinase with increased activity on polyester substrates. Biotechnology Journal, 2011, 6, 1230-1239.	3.5	127
115	Changes in the bacterial community structure and diversity during bamboo retting. Biotechnology Journal, 2011, 6, 1262-1271.	3.5	10
116	In situ laccaseâ€assisted overdyeing of denim using flavonoids. Biotechnology Journal, 2011, 6, 1272-1279.	3.5	24
117	Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing. Applied Microbiology and Biotechnology, 2011, 89, 981-987.	3.6	44
118	Antimicrobial and antioxidant linen via laccase-assisted grafting. Reactive and Functional Polymers, 2011, 71, 713-720.	4.1	66
119	Attaching Different Kinds of Proteinaceous Nanospheres to a Variety of Fabrics Using Ultrasound Radiation. Israel Journal of Chemistry, 2010, 50, 524-529.	2.3	12
120	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technology, 2010, 101, 5054-5062.	9.6	112
121	Enzymatic hydrolysis and modification of core polymer fibres for textile and other applications. , 2010, , 77-97.		9
122	Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. Polymer International, 2009, 58, 863-868.	3.1	33
123	Proteolytic Enzyme Engineering: A Tool for Wool. Biomacromolecules, 2009, 10, 1655-1661.	5.4	34
124	Preliminary research on bamboo degumming with xylanase. Biocatalysis and Biotransformation, 2008, 26, 450-454.	2.0	13
125	Biotransformations in synthetic fibres. Biocatalysis and Biotransformation, 2008, 26, 350-356.	2.0	20
126	Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. Journal of Biotechnology, 2007, 128, 849-857.	3.8	161

#	Article	IF	CITATIONS
127	Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme and Microbial Technology, 2007, 40, 1678-1685.	3.2	56
128	Laccase immobilization on enzymatically functionalized polyamide 6,6 fibres. Enzyme and Microbial Technology, 2007, 41, 867-875.	3.2	76
129	Cutinase?A new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A, 2005, 43, 2448-2450.	2.3	106
130	Influence of organic solvents on cutinase stability and accessibility to polyamide fibers. Journal of Polymer Science Part A, 2005, 43, 2749-2753.	2.3	32
131	Monitoring biotransformations in polyamide fibres. Biocatalysis and Biotransformation, 2004, 22, 357-360.	2.0	35
132	The comfort properties of cosmeto-textiles functionalized with protein-based nanoemulsions encapsulating Vitamin-E. Journal of Natural Fibers, 0, , 1-13.	3.1	2
133	Hair Styling Based on Eutectic Formulations with Peptides. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0