Piotr Kowalczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5995486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are nanohedgehogs thirsty? Toward new superhydrophobic and anti-icing carbon nanohorn-polymer hybrid surfaces. Chemical Engineering Journal, 2022, 446, 137126.	12.7	11
2	<i>In silico</i> study on the effects of carbonyl groups on chemical equilibrium of reactions with a polar product occurring under confinement in pores of activated carbons. Chemical Engineering Communications, 2021, 208, 171-182.	2.6	29
3	The Finite Pore Volume GAB Adsorption Isotherm Model as a Simple Tool to Estimate a Diameter of Cylindrical Nanopores. Molecules, 2021, 26, 1509.	3.8	23
4	Revisiting Wetting, Freezing, and Evaporation Mechanisms of Water on Copper. ACS Applied Materials & Interfaces, 2021, 13, 37893-37903.	8.0	17
5	Insight into the Mechanisms of Low Coverage Adsorption of N-Alcohols on Single Walled Carbon Nanohorn. Materials, 2021, 14, 4001.	2.9	2
6	Liquid phase adsorption induced nanosizing of graphene oxide. Carbon, 2021, 183, 948-957.	10.3	6
7	Linking the Defective Structure of Boron-Doped Carbon Nano-Onions with Their Catalytic Properties: Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2021, 13, 51628-51642.	8.0	5
8	Opening the internal structure for transport of ions: improvement of the structural and chemical properties of single-walled carbon nanohorns for supercapacitor electrodes. RSC Advances, 2020, 10, 38357-38368.	3.6	6
9	Reconstructing the fractal clusters of detonation nanodiamonds from small-angle X-ray scattering. Carbon, 2020, 169, 349-356.	10.3	8
10	Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption. Carbon, 2020, 165, 67-81.	10.3	19
11	Electrophoretic Deposition of Layer-by-Layer Unsheathed Carbon Nanotubes—A Step Towards Steerable Surface Roughness and Wettability. Materials, 2020, 13, 595.	2.9	6
12	What Is the Value of Water Contact Angle on Silicon?. Materials, 2020, 13, 1554.	2.9	27
13	Mechanistic aspects of water adsorption-desorption in porphyrin containing MOFs. Microporous and Mesoporous Materials, 2019, 290, 109649.	4.4	9
14	The effects of confinement in pores built of folded graphene sheets on the equilibrium of nitrogen monoxide dimerisation reaction. Journal of Physics Condensed Matter, 2019, 31, 135001.	1.8	25
15	Testing the self-cleaning properties of a coordination polymer surface. Adsorption, 2019, 25, 33-39.	3.0	1
16	Stability of coordination polymers in water: state of the art and towards a methodology for nonporous materials. Adsorption, 2019, 25, 1-11.	3.0	10
17	Water Nanodroplet on a Hydrocarbon "Carpetâ€â€"The Mechanism of Water Contact Angle Stabilization by Airborne Contaminations on Graphene, Au, and PTFE Surfaces. Langmuir, 2019, 35, 420-427.	3.5	17
18	Super-sieving effect in phenol adsorption from aqueous solutions on nanoporous carbon beads. Carbon, 2018, 135, 12-20.	10.3	34

#	Article	IF	CITATIONS
19	Nanoscale Water Contact Angle on Polytetrafluoroethylene Surfaces Characterized by Molecular Dynamics–Atomic Force Microscopy Imaging. Langmuir, 2018, 34, 4526-4534.	3.5	37
20	Phenol Molecular Sheets Woven by Water Cavities in Hydrophobic Slit Nanospaces. Langmuir, 2018, 34, 15150-15159.	3.5	1
21	Carbon Nanohorns as Reaction Nanochambers – a Systematic Monte Carlo Study. Scientific Reports, 2018, 8, 15407.	3.3	29
22	Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory. Langmuir, 2017, 33, 1769-1779.	3.5	52
23	Switchable hydrophobicity/hydrophilicity of a HOPG surface - Comment on the paper by Y. Wei and C.Q. Jia, Carbon, 87 (2015) 10-17. Carbon, 2017, 115, 571-573.	10.3	10
24	New forcefield for water nanodroplet on a graphene surface. Chemical Physics Letters, 2017, 674, 98-102.	2.6	21
25	Molecular simulation aided nanoporous carbon design for highly efficient low-concentrated formaldehyde capture. Carbon, 2017, 124, 152-160.	10.3	30
26	Water Adsorption Property of Hierarchically Nanoporous Detonation Nanodiamonds. Langmuir, 2017, 33, 11180-11188.	3.5	28
27	Nanoscale Insight into the Mechanism of a Highly Oriented Pyrolytic Graphite Edge Surface Wetting by "Interferencing―Water. Langmuir, 2017, 33, 8562-8573.	3.5	4
28	Monte Carlo study of chemical reaction equilibria in pores of activated carbons. RSC Advances, 2017, 7, 53667-53679.	3.6	6
29	CO2 - Reinforced nanoporous carbon potential energy field during CO2/CH4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight. Carbon, 2017, 122, 185-193.	10.3	5
30	Morphologically disordered pore model for characterization of micro-mesoporous carbons. Carbon, 2017, 111, 358-370.	10.3	25
31	To what extent can mutual shifting of folded carbonaceous walls in slit-like pores affect their adsorption properties?. Journal of Physics Condensed Matter, 2016, 28, 015002.	1.8	1
32	New findings on the influence of carbon surface curvature on energetics of benzene adsorption from gaseous phase. Chemical Physics Letters, 2016, 645, 157-163.	2.6	4
33	Carbon Nanohorns. , 2016, , 75-114.		1
34	Cubic Carbon Polymorphs. , 2016, , 141-156.		0
35	The influence of geometric heterogeneity of closed carbon nanotube bundles on benzene adsorption from the gaseous phase-Monte Carlo simulations. Adsorption, 2016, 22, 639-651.	3.0	8
36	Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon, 2016, 103, 263-272.	10.3	36

#	Article	IF	CITATIONS
37	Water nanodroplet on a graphene surface—a new old system. Journal of Physics Condensed Matter, 2016, 28, 495002.	1.8	13
38	Water at Curved Carbon Surface: Mechanisms of Adsorption Revealed by First Calorimetric Study. Journal of Physical Chemistry C, 2015, 119, 2703-2715.	3.1	10
39	New insights into the ideal adsorbed solution theory. Physical Chemistry Chemical Physics, 2015, 17, 7232-7247.	2.8	25
40	Intrinsic D ₂ /H ₂ Selectivity of NaX Zeolite: Interplay between Adsorption and Kinetic Factors. Journal of Physical Chemistry C, 2015, 119, 15373-15380.	3.1	16
41	Effects of Critical Fluctuations on Adsorption-Induced Deformation of Microporous Carbons. Journal of Physical Chemistry C, 2015, 119, 6111-6120.	3.1	8
42	Nuclear Quantum Effects in the Layering and Diffusion of Hydrogen Isotopes in Carbon Nanotubes. Journal of Physical Chemistry Letters, 2015, 6, 3367-3372.	4.6	15
43	Properties of Phenol Confined in Realistic Carbon Micropore Model: Experiment and Simulation. Journal of Physical Chemistry C, 2015, 119, 19987-19995.	3.1	14
44	Folding of graphene slit like pore walls—a simple method of improving CO ₂ separation from mixtures with CH ₄ or N ₂ . Journal of Physics Condensed Matter, 2014, 26, 485006.	1.8	7
45	MD simulation of organics adsorption from aqueous solution in carbon slit-like pores. Foundations of the pore blocking effect. Journal of Physics Condensed Matter, 2014, 26, 055008.	1.8	10
46	Toward in silico modeling of palladium–hydrogen–carbon nanohorn nanocomposites. Physical Chemistry Chemical Physics, 2014, 16, 11763-11769.	2.8	5
47	Carbon Molecular Sieves: Reconstruction of Atomistic Structural Models with Experimental Constraints. Journal of Physical Chemistry C, 2014, 118, 12996-13007.	3.1	21
48	Surface to volume ratio of carbon nanohorn – A crucial factor in CO2/CH4 mixture separation. Chemical Physics Letters, 2014, 595-596, 67-72.	2.6	7
49	Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures. Journal of Colloid and Interface Science, 2013, 397, 144-153.	9.4	42
50	Porosity of closed carbon nanotubes compressed using hydraulic pressure. Adsorption, 2013, 19, 785-793.	3.0	4
51	Carbon materials as new nanovehicles in hot-melt drug deposition. Journal of Physics Condensed Matter, 2013, 25, 355002.	1.8	9
52	To the pore and through the pore: thermodynamics and kinetics of helium in exotic cubic carbon polymorphs. Physical Chemistry Chemical Physics, 2013, 15, 17366.	2.8	6
53	Influence of activated carbon surface oxygen functionalities on SO2 physisorption – Simulation and experiment. Chemical Physics Letters, 2013, 578, 85-91.	2.6	32
54	Screening of carbonaceous nanoporous materials for capture of nerve agents. Physical Chemistry Chemical Physics, 2013, 15, 291-298.	2.8	25

#	Article	IF	CITATIONS
55	Constant Pressure Path Integral Gibbs Ensemble Monte Carlo Method. Journal of Chemical Theory and Computation, 2013, 9, 2922-2929.	5.3	11
56	Detecting adsorption space in carbon nanotubes by benzene uptake. Journal of Colloid and Interface Science, 2013, 391, 74-85.	9.4	13
57	Applicability of molecular simulations for modelling the adsorption of the greenhouse gas CF4on carbons. Journal of Physics Condensed Matter, 2013, 25, 015004.	1.8	10
58	Separation of CO2–CH4 mixtures on defective single walled carbon nanohorns – tip does matter. Physical Chemistry Chemical Physics, 2013, 15, 16468.	2.8	15
59	Simulation of SF6 adsorption on the bundles of single walled carbon nanotubes. Microporous and Mesoporous Materials, 2012, 154, 51-55.	4.4	15
60	Cryogenic Noble Gas Separation without Distillation: The Effect of Carbon Surface Curvature on Adsorptive Separation. Journal of Physical Chemistry C, 2012, 116, 19363-19371.	3.1	6
61	Molecular insight into the high selectivity of double-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2012, 14, 2784.	2.8	26
62	Methane-Induced Deformation of Porous Carbons: From Normal to High-Pressure Operating Conditions. Journal of Physical Chemistry C, 2012, 116, 1740-1747.	3.1	24
63	Virtual Porous Carbons. , 2012, , 61-104.		10
64	Displacement of Methane by Coadsorbed Carbon Dioxide Is Facilitated In Narrow Carbon Nanopores. Journal of Physical Chemistry C, 2012, 116, 13640-13649.	3.1	48
65	Thermodynamics of benzene adsorption on oxidized carbon nanotubes – experimental and simulation studies. Chemical Physics Letters, 2012, 538, 93-98.	2.6	20
66	Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis. RSC Advances, 2012, 2, 4292.	3.6	18
67	Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 9824.	2.8	4
68	Optimization of Coarse-Grained Interaction Potential: Inside Inherent Limitations of Coarse-Graining Methods. Journal of Physical Chemistry B, 2011, 115, 6985-6994.	2.6	7
69	Cryogenic Helium Adsorbed in Zeolite Rho: Inside Localization Controlled Self-Diffusion of Confined Quantum Particles. Journal of Physical Chemistry C, 2011, 115, 18105-18110.	3.1	3
70	Molecular dynamics of zigzag single walled carbon nanotube immersion in water. Physical Chemistry Chemical Physics, 2011, 13, 5621.	2.8	10
71	Simulating the changes in carbon structure during the burn-off process. Journal of Colloid and Interface Science, 2011, 360, 211-219.	9.4	17
72	The influence of the carbon surface chemical composition on Dubinin–Astakhov equation parameters calculated from SF6adsorption data—grand canonical Monte Carlo simulation. Journal of Physics Condensed Matter, 2011, 23, 395005.	1.8	5

#	Article	IF	CITATIONS
73	Simple model of adsorption on external surface of carbon nanotubes—aÂnew analytical approach basing on molecular simulation data. Adsorption, 2010, 16, 197-213.	3.0	23
74	The system of carbon tetrachloride and closed carbon nanotubes analyzed by a combination of molecular simulations, analytical modeling, and adsorption calorimetry. Journal of Colloid and Interface Science, 2010, 349, 321-330.	9.4	6
75	BET surface area of carbonaceous adsorbents—Verification using geometric considerations and GCMC simulations on virtual porous carbon models. Applied Surface Science, 2010, 256, 5204-5209.	6.1	23
76	The influence of carbon surface oxygen groups on Dubinin–Astakhov equation parameters calculated from CO ₂ adsorption isotherm. Journal of Physics Condensed Matter, 2010, 22, 085003.	1.8	24
77	Microscopic model of carbonaceous nanoporous molecular sieves—anomalous transport in molecularly confined spaces. Physical Chemistry Chemical Physics, 2010, 12, 11351.	2.8	17
78	Carbon Dioxide Adsorption-Induced Deformation of Microporous Carbons. Journal of Physical Chemistry C, 2010, 114, 5126-5133.	3.1	61
79	Nanoporous Quantum Filters: Inside Vaporâ^'Liquid Transitions of Quantum Fluids in Nanopores. Journal of Physical Chemistry B, 2010, 114, 5047-5052.	2.6	11
80	Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide at Ambient Temperatures. Journal of Physical Chemistry C, 2010, 114, 21465-21473.	3.1	26
81	Activated carbon immersed in water—the origin of linear correlation between enthalpy of immersion and oxygen content studied by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2010, 12, 10701.	2.8	7
82	Adsorption potential distributions for carbons having defined pore structure—GCMC simulations of the effect of heterogeneity. Adsorption, 2009, 15, 99-113.	3.0	6
83	Frequency-Dependent Diffusion Constant of Quantum Fluids from Path Integral Monte Carlo and Tikhonov's Regularizing Functional. Journal of Chemical Theory and Computation, 2009, 5, 1990-1996.	5.3	5
84	Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N ₂ and CO ₂ adsorption isotherms? Simulation results for a realistic carbon model. Journal of Physics Condensed Matter, 2009, 21, 315005.	1.8	35
85	Ar, CCl4 and C6H6 adsorption outside and inside of the bundles of multi-walled carbon nanotubes—simulation study. Physical Chemistry Chemical Physics, 2009, 11, 4982.	2.8	19
86	Impact of the carbon pore size and topology on the equilibrium quantum sieving of hydrogen isotopes at zero coverage and finite pressures. Journal of Physics Condensed Matter, 2009, 21, 144210.	1.8	21
87	Role of Short-Range Directional Interactions in Coarse-Graining of Protic/Aprotic Liquids. Journal of Physical Chemistry B, 2009, 113, 12988-12998.	2.6	10
88	Fullerene-Intercalated Graphene Nano-Containers — Mechanism of Argon Adsorption and High-Pressure CH ₄ and CO ₂ Storage Capacities. Adsorption Science and Technology, 2009, 27, 281-296.	3.2	35
89	Adsorption from aqueous solutions on opened carbon nanotubes—organic compounds speed up delivery of water from inside. Physical Chemistry Chemical Physics, 2009, 11, 9341.	2.8	20
90	Static and thermodynamic properties of low-density supercritical 4He—breakdown of the Feynman–Hibbs approximation. Physical Chemistry Chemical Physics, 2009, 11, 9182.	2.8	13

#	Article	IF	CITATIONS
91	Efficient Adsorption of Super Greenhouse Gas (Tetrafluoromethane) in Carbon Nanotubes. Environmental Science & Technology, 2008, 42, 2931-2936.	10.0	45
92	Cryogenic Separation of Hydrogen Isotopes in Single-Walled Carbon and Boron-Nitride Nanotubes: Insight into the Mechanism of Equilibrium Quantum Sieving in Quasi-One-Dimensional Pores. Journal of Physical Chemistry B, 2008, 112, 8275-8284.	2.6	42
93	Adsorption-Induced Deformation of Microporous Carbons: Pore Size Distribution Effect. Langmuir, 2008, 24, 6603-6608.	3.5	129
94	Heterogeneity on high-resolution αs plots for carbon nanotubes—GCMC study. Physical Chemistry Chemical Physics, 2008, 10, 4551.	2.8	5
95	Hydrogen storage in nanoporous carbon materials: myth and facts. Physical Chemistry Chemical Physics, 2007, 9, 1786-1792.	2.8	151
96	How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?. Physical Chemistry Chemical Physics, 2007, 9, 5919.	2.8	70
97	Single-Walled Carbon Nanotubes:  Efficient Nanomaterials for Separation and On-Board Vehicle Storage of Hydrogen and Methane Mixture at Room Temperature?. Journal of Physical Chemistry C, 2007, 111, 5250-5257.	3.1	59
98	Hyper-parallel tempering Monte Carlo simulations of Ar adsorption in new models of microporous non-graphitizing activated carbon: effect of microporosity. Journal of Physics Condensed Matter, 2007, 19, 406208.	1.8	43
99	Thermodynamics of Hydrogen Adsorption in Slit-like Carbon Nanopores at 77 K. Classical versus Path-Integral Monte Carlo Simulations. Langmuir, 2007, 23, 3666-3672.	3.5	56
100	Bimodal pore size distributions for carbons: Experimental results and computational studies. Journal of Colloid and Interface Science, 2007, 310, 205-216.	9.4	24
101	Thermodynamics of the CMMS Approach and Carbon Surface Chemistry in SO2Adsorption. Langmuir, 2006, 22, 6887-6892.	3.5	13
102	Equilibrium Properties of Dense Hydrogen Isotope Gases Based on the Theory of Simple Fluids. Journal of Physical Chemistry B, 2006, 110, 14971-14975.	2.6	4
103	Optimization of Slitlike Carbon Nanopores for Storage of hythane Fuel at Ambient Temperatures. Journal of Physical Chemistry B, 2006, 110, 23770-23776.	2.6	21
104	State of Hydrogen in Idealized Carbon Slitlike Nanopores at 77 K. Langmuir, 2006, 22, 1970-1972.	3.5	42
105	Nanoscale Tubular Vessels for Storage of Methane at Ambient Temperatures. Langmuir, 2006, 22, 9035-9040.	3.5	53
106	Grand Canonical Monte Carlo Simulation Study of Hydrogen Storage in Ordered Mesoporous Carbons at 303 K. Adsorption Science and Technology, 2006, 24, 411-426.	3.2	4
107	Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chemical Physics Letters, 2006, 421, 409-414.	2.6	59
108	Benzene adsorption on carbonaceous materials: The influence of pore structure on the state of the adsorbate. Applied Surface Science, 2006, 253, 2525-2539.	6.1	11

#	Article	IF	CITATIONS
109	Some remarks on the calculation of the pore size distribution function of activated carbons. Journal of Colloid and Interface Science, 2006, 300, 453-474.	9.4	20
110	Porous structure of natural and modified clinoptilolites. Journal of Colloid and Interface Science, 2006, 297, 77-85.	9.4	85
111	New approach to determination of surface heterogeneity of adsorbents and catalysts from the temperature programmed desorption (TPD) technique: One step beyond the condensation approximation (CA) method. Journal of Colloid and Interface Science, 2005, 291, 334-344.	9.4	16
112	Heterogeneous Do–Do model of water adsorption on carbons. Journal of Colloid and Interface Science, 2005, 290, 1-13.	9.4	42
113	Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions. Journal of Colloid and Interface Science, 2005, 284, 408-415.	9.4	121
114	Storage of Hydrogen at 303 K in Graphite Slitlike Pores from Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry B, 2005, 109, 17174-17183.	2.6	101
115	Modeling of the Hysteresis Phenomena in Finite-Sized Slitlike Nanopores. Revision of the Recent Results by Rigorous Numerical Analysis. Langmuir, 2005, 21, 6613-6627.	3.5	11
116	Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation. Journal of Physical Chemistry B, 2005, 109, 14659-14666.	2.6	30
117	Improvement of the Derjaguin-Broekhoff-de Boer Theory for the Capillary Condensation/Evaporation of Nitrogen in Spherical Cavities and Its Application for the Pore Size Analysis of Silicas with Ordered Cagelike Mesopores. Langmuir, 2005, 21, 10530-10536.	3.5	16
118	Grand Canonical Monte Carlo Simulation Study of Methane Adsorption at an Open Graphite Surface and in Slitlike Carbon Pores at 273 K. Langmuir, 2005, 21, 5639-5646.	3.5	83
119	Improvement of the Derjaguinâ ''Broekhoffâ 'de Boer Theory for Capillary Condensation/Evaporation of Nitrogen in Mesoporous Systems and Its Implications for Pore Size Analysis of MCM-41 Silicas and Related Materials. Langmuir, 2005, 21, 1827-1833.	3.5	40
120	Effect of the Carbon Surface Layer Chemistry on Benzene Adsorption from the Vapor Phase and from Dilute Aqueous Solutions. Langmuir, 2005, 21, 12257-12267.	3.5	23
121	Description of benzene adsorption in slit-like pores. Theoretical foundations of the improved Horvath–Kawazoe method. Carbon, 2004, 42, 851-864.	10.3	13
122	Determination of the adsorption energy distribution function of upd hydrogen on monocrystalline platinum. Journal of Electroanalytical Chemistry, 2004, 574, 41-47.	3.8	14
123	Estimating the pore size distribution of activated carbons from adsorption data of different adsorbates by various methods. Journal of Colloid and Interface Science, 2004, 273, 39-63.	9.4	66
124	Impact of an adsorbed phase nonideality in the calculation of the filling pressure of carbon slit-like micropores. Carbon, 2004, 42, 573-583.	10.3	14
125	The evaluation of the surface heterogeneity of carbon blacks from the lattice density functional theory. Carbon, 2004, 42, 1813-1823.	10.3	15
126	Estimation of the pore-size distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon, 2003, 41, 1113-1125.	10.3	78

#	Article	IF	CITATIONS
127	Developing the solution analogue of the Toth adsorption isotherm equation. Journal of Colloid and Interface Science, 2003, 266, 473-476.	9.4	75
128	The comparative characterization of structural heterogeneity of mesoporous activated carbon fibers (ACFs). Applied Surface Science, 2003, 206, 67-77.	6.1	44
129	Toward Solving the Unstable Linear Fredholm Equation of the First Kind:Â A New Procedure Called the Adsorption Stochastic Algorithm (ASA) and Its Properties. Langmuir, 2003, 19, 4253-4268.	3.5	38
130	Numerical Analysis of the Horvath–Kawazoe Equation — The Adsorption of Nitrogen, Argon, Benzene, Carbon Tetrachloride and Sulphur Hexafluoride. Adsorption Science and Technology, 2002, 20, 295-305.	3.2	12
131	The Application of a CONTIN Package for the Evaluation of Micropore Size Distribution Functions. Langmuir, 2002, 18, 5406-5413.	3.5	23
132	Homogeneous and Heterogeneous Micropore Structures in Carbonaceous Adsorbents—Twenty Years Later. Journal of Colloid and Interface Science, 2002, 254, 242-249.	9.4	4
133	New relationships between the characteristic energy of adsorption and the average effective diameter of carbon slit-like micropores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201, 17-30.	4.7	15
134	What kind of pore size distribution is assumed in the Dubinin–Astakhov adsorption isotherm equation?. Carbon, 2002, 40, 2879-2886.	10.3	73
135	A Simple Method of the Determination of the Structural Heterogeneity of Microporous Solids. Journal of Colloid and Interface Science, 2001, 236, 387-390.	9.4	0
136	Characterization of Microporous Carbon Materials by Means of a New Gamma-Type Adsorption Isotherm Equation. Journal of Colloid and Interface Science, 2001, 243, 300-305.	9.4	5
137	The Comparative Analysis of the Properties of Two Micropore-Size Distribution Functions: The Pfeifer–Avnir Function and the Gamma-Type One. Journal of Colloid and Interface Science, 2001, 244, 439.443	9.4	4