Tamas L Horvath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5995167/publications.pdf

Version: 2024-02-01

252 papers 35,830 citations

87 h-index 182 g-index

280 all docs

280 docs citations

times ranked

280

34030 citing authors

#	Article	lF	CITATIONS
1	TREM2 Deficiency Disrupts Network Oscillations Leading to Epileptic Activity and Aggravates Amyloid-Î ² -Related Hippocampal Pathophysiology in Mice. Journal of Alzheimer's Disease, 2022, 88, 837-847.	2.6	7
2	From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocrine Reviews, 2022, 43, 743-760.	20.1	3
3	Tamas Horvath: The hunger view on body, brain and behavior. , 2022, , 67-146.		O
4	A hypothalamic pathway for Augmentor α–controlled body weight regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200476119.	7.1	8
5	Metabolism Connects Body, Brain, and Behavior. Biological Psychiatry, 2022, 91, 854-855.	1.3	0
6	Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	2
7	AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nature Metabolism, 2022, 4, 683-692.	11.9	10
8	Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal of Experimental Medicine, 2021, 218, .	8 . 5	677
9	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	5.6	180
10	Presynaptic Kv3 channels are required for fast and slow endocytosis of synaptic vesicles. Neuron, 2021, 109, 938-946.e5.	8.1	16
11	Drp1 is required for AgRP neuronal activity and feeding. ELife, 2021, 10, .	6.0	13
12	Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nature Communications, 2021, 12, 1731.	12.8	12
13	Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Molecular Psychiatry, 2021, 26, 2740-2752.	7.9	20
14	Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	38
15	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	28.9	141
16	Ageâ€related calcium dysregulation linked with tau pathology and impaired cognition in nonâ€human primates. Alzheimer's and Dementia, 2021, 17, 920-932.	0.8	55
17	Adiponectin preserves metabolic fitness during aging. ELife, 2021, 10, .	6.0	37
18	Mitochondrial Fission Governed by Drp1 Regulates Exogenous Fatty Acid Usage and Storage in Hela Cells. Metabolites, 2021, 11, 322.	2.9	16

#	Article	IF	CITATIONS
19	Defective autophagy in Sf1 neurons perturbs the metabolic response to fasting and causes mitochondrial dysfunction. Molecular Metabolism, 2021, 47, 101186.	6.5	8
20	Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism, 2021, 33, 1155-1170.e10.	16.2	68
21	Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife, 2021, 10, .	6.0	37
22	Therapy for Alzheimer's disease: Missing targets and functional markers?. Ageing Research Reviews, 2021, 68, 101318.	10.9	34
23	Mortality of septic shock patients is associated with impaired mitochondrial oxidative coupling efficiency in lymphocytes: a prospective cohort study. Intensive Care Medicine Experimental, 2021, 9, 39.	1.9	5
24	Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism, 2021, 33, 1820-1835.e9.	16.2	32
25	Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	46
26	Astrocytic lipid metabolism determines susceptibility to diet-induced obesity. Science Advances, 2021, 7, eabj2814.	10.3	11
27	Impact of TREM2 on hippocampal network oscillations in Tg2576 mice modeling amyloid- \hat{l}^2 pathology Alzheimer's and Dementia, 2021, 17 Suppl 3, e054379.	0.8	O
28	AgRP neurons control compulsive exercise and survival in an activity-based anorexia model. Nature Metabolism, 2020, 2, 1204-1211.	11.9	45
29	The aging rhesus macaque as a potential model for Alzheimer's disease/dementia: An in vivo study of [11 C]PIB, [11 C]UCBâ€j, [18 F]MKâ€6240 and working memory performance. Alzheimer's and Dementia, 2020, 16, e038467.	0.8	O
30	GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metabolism, 2020, 31, 1189-1205.e13.	16.2	76
31	Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology, 2020, 45, 1645-1655.	5.4	22
32	Functional Aspects of Hypothalamic Asymmetry. Brain Sciences, 2020, 10, 389.	2.3	13
33	Metabolic Lateralization in the Hypothalamus of Male Rats Related to Reproductive and Satiety States. Reproductive Sciences, 2020, 27, 1197-1205.	2.5	7
34	Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. Journal of Clinical Investigation, 2020, 130, 4985-4998.	8.2	21
35	SARS–CoV-2 infection of the placenta. Journal of Clinical Investigation, 2020, 130, 4947-4953.	8.2	387
36	Crosstalk between maternal perinatal obesity and offspring dopaminergic circuitry. Journal of Clinical Investigation, 2020, 130, 3416-3418.	8.2	0

3

#	Article	IF	Citations
37	Altered Cortical and Hippocampal Excitability in TgF344-AD Rats Modeling Alzheimer's Disease Pathology. Cerebral Cortex, 2019, 29, 2716-2727.	2.9	54
38	Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death and Disease, $2019, 10, 560$.	6.3	71
39	Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging, 2019, 11, 3919-3938.	3.1	57
40	Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 2019, 30, 890-902.e8.	16.2	110
41	Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertility and Sterility, 2019, 111, 197-204.	1.0	50
42	Parallel Paths in PVH Control of Feeding. Neuron, 2019, 102, 514-516.	8.1	4
43	Prefrontal Cortical and Behavioral Adaptations to Surgical Delivery Mediated by Metabolic Principles. Cerebral Cortex, 2019, 29, 5061-5071.	2.9	7
44	Dopamine neuronal protection in the mouse Substantia nigra by GHSR is independent of electric activity. Molecular Metabolism, 2019, 24, 120-138.	6.5	7
45	Mitofusin 2 in Mature Adipocytes Controls Adiposity and Body Weight. Cell Reports, 2019, 26, 2849-2858.e4.	6.4	50
46	Neutrophil count as the centerpiece in the joined association networks of inflammatory and cell damage markers, and neuroendocrine stress markers in patients with stable angina pectoris following stenting. PLoS ONE, 2019, 14, e0215209.	2. 5	6
47	Metabolism: A Burning Opioid Issue in Obesity Therapeutics. Current Biology, 2019, 29, R1323-R1325.	3.9	1
48	Effects of myeloid sirtuin 1 deficiency on hypothalamic neurogranin in mice fed a high-fat diet. Biochemical and Biophysical Research Communications, 2019, 508, 123-129.	2.1	0
49	Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nature Neuroscience, 2019, 22, 7-14.	14.8	200
50	Neuronal Cilia: Another Player in the Melanocortin System. Trends in Molecular Medicine, 2018, 24, 333-334.	6.7	7
51	Myeloid sirtuin1 deficiency aggravates hippocampal inflammation in mice fed high-fat diets. Biochemical and Biophysical Research Communications, 2018, 499, 1025-1031.	2.1	16
52	Ghrelin is Related to Personality Differences in Reward Sensitivity and Impulsivity. Alcohol and Alcoholism, 2018, 53, 52-56.	1.6	35
53	Type I interferons instigate fetal demise after Zika virus infection. Science Immunology, 2018, 3, .	11.9	212
54	Patient-Derived iPSC-Hypothamic Neurons: The Ultimate Protocol. Cell Stem Cell, 2018, 22, 615-616.	11.1	0

#	Article	IF	CITATIONS
55	Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis. Molecular Metabolism, 2018, 11, 59-69.	6.5	80
56	From white to beige: a new hypothalamic pathway. EMBO Reports, 2018, 19, .	4.5	1
57	Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum. Frontiers in Neuroendocrinology, 2018, 48, 23-36.	5.2	14
58	Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight, 2018, 3, .	5.0	91
59	Neurophysiological signals as predictive translational biomarkers for Alzheimer's disease treatment: effects of donepezil on neuronal network oscillations in TgF344-AD rats. Alzheimer's Research and Therapy, 2018, 10, 105.	6.2	29
60	Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Reports, 2018, 25, 383-397.e10.	6.4	26
61	The 7q11.23 Protein DNAJC30 Interacts with ATP Synthase and Links Mitochondria to Brain Development. Cell, 2018, 175, 1088-1104.e23.	28.9	46
62	Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10142-10147.	7.1	25
63	Hypothalamic <scp>CNTF</scp> volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO Journal, 2018, 37, .	7.8	33
64	Mitochondrial unfolded protein response gene <i>Clpp</i> is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of preâ€implantation embryos. Aging Cell, 2018, 17, e12784.	6.7	71
65	Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Reports, 2018, 24, 1085-1092.e6.	6.4	21
66	Comparative Analysis of Zearalenone Effects on Thyroid Receptor Alpha (TR \hat{l} ±) and Beta (TR \hat{l} ²) Expression in Rat Primary Cerebellar Cell Cultures. International Journal of Molecular Sciences, 2018, 19, 1440.	4.1	8
67	Viral Vectors for Studying Brain Mechanisms that Control Energy Homeostasis. Cell Metabolism, 2018, 27, 1168-1175.	16.2	7
68	Insulin regulates POMC neuronal plasticity to control glucose metabolism. ELife, 2018, 7, .	6.0	85
69	(S)Pot on Mitochondria: Cannabinoids Disrupt Cellular Respiration to Limit Neuronal Activity. Cell Metabolism, 2017, 25, 8-10.	16.2	31
70	Mitochondria Bioenergetic and Cognitive Functions: The Cannabinoid Link. Trends in Cell Biology, 2017, 27, 391-392.	7.9	4
71	Fetal Growth Restriction Caused by Sexual Transmission of Zika Virus in Mice. Journal of Infectious Diseases, 2017, 215, 1720-1724.	4.0	44
72	Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nature Neuroscience, 2017, 20, 1096-1103.	14.8	59

#	Article	IF	Citations
73	Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control. Cell Metabolism, 2017, 25, 1390-1399.e6.	16.2	106
74	Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus. Molecular Metabolism, 2017, 6, 374-381.	6.5	26
75	Microglial Proliferation in Obesity: When, Where, Why, and What Does It Mean?. Diabetes, 2017, 66, 804-805.	0.6	2
76	Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes, 2017, 66, 1511-1520.	0.6	13
77	Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience, 2017, 20, 176-188.	14.8	384
78	Molecular and cellular reorganization of neural circuits in the human lineage. Science, 2017, 358, 1027-1032.	12.6	192
79	Ghrelin is Supressed by Intravenous Alcohol and is Related to Stimulant and Sedative Effects of Alcohol. Alcohol and Alcoholism, 2017, 52, 431-438.	1.6	35
80	Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife, 2017, 6, .	6.0	19
81	Obesity and Appetite: Central Control Mechanisms. , 2017, , 369-376.		0
82	Cannabis in fat: high hopes to treat obesity. Journal of Clinical Investigation, 2017, 127, 3918-3920.	8.2	9
83	Comparative Medicine: An Inclusive Crossover Discipline. Yale Journal of Biology and Medicine, 2017, 90, 493-498.	0.2	3
84	Comparison of Individual and Combined Effects of Four Endocrine Disruptors on Estrogen Receptor Beta Transcription in Cerebellar Cell Culture: The Modulatory Role of Estradiol and Triiodo-Thyronine. International Journal of Environmental Research and Public Health, 2016, 13, 619.	2.6	7
85	Bisphenol A influences oestrogen- and thyroid hormone-regulated thyroid hormone receptor expression in rat cerebellar cell culture. Acta Veterinaria Hungarica, 2016, 64, 497-513.	0.5	12
86	Synaptic lipids in cortical function andÂpsychiatric disorders. EMBO Molecular Medicine, 2016, 8, 3-5.	6.9	3
87	HSV-2 enhances ZIKV infection of the placenta and induces apoptosis in first-trimester trophoblast cells. American Journal of Reproductive Immunology, 2016, 76, 348-357.	1.2	53
88	Feeding Behavior: Hypocretin/Orexin Neurons Act between Food Seeking and Eating. Current Biology, 2016, 26, R845-R847.	3.9	10
89	Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas, 2016, 93, 121-130.	2.4	72
90	Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell, 2016, 166, 867-880.	28.9	382

#	Article	IF	Citations
91	Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Reports, 2016, 16, 2576-2592.	6.4	253
92	Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell, 2016, 166, 1247-1256.e4.	28.9	347
93	CD301b + Mononuclear Phagocytes Maintain Positive Energy Balance through Secretion of Resistin-like Molecule Alpha. Immunity, 2016, 45, 583-596.	14.3	44
94	Hypothalamic TLR2 triggers sickness behavior via a microglia-neuronal axis. Scientific Reports, 2016, 6, 29424.	3.3	70
95	Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Scientific Reports, 2016, 6, 30111.	3.3	78
96	Viral Spread to Enteric Neurons Links Genital HSV-1 Infection to Toxic Megacolon and Lethality. Cell Host and Microbe, 2016, 19, 788-799.	11.0	58
97	Role of mitochondrial uncoupling protein-2 (UCP2) in higher brain functions, neuronal plasticity and network oscillation. Molecular Metabolism, 2016, 5, 415-421.	6. 5	21
98	Metabolism and Mental Illness. Trends in Molecular Medicine, 2016, 22, 174-183.	6.7	17
99	Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiology of Disease, 2016, 90, 68-74.	4.4	22
100	Calcineurin $\hat{A^{13}}$ is a Functional Phosphatase That Modulates Synaptic Vesicle Endocytosis. Journal of Biological Chemistry, 2016, 291, 1948-1956.	3.4	18
101	Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell, 2016, 165, 434-448.	28.9	57
102	The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Progress in Neurobiology, 2016, 144, 68-87.	5.7	47
103	Reducing Adiposity in a Critical Developmental Window Has Lasting Benefits in Mice. Endocrinology, 2016, 157, 666-678.	2.8	2
104	Mitochondrial Uncoupling Protein 2 (UCP2) Regulates Retinal Ganglion Cell Number and Survival. Journal of Molecular Neuroscience, 2016, 58, 461-469.	2.3	25
105	Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1026-1031.	7.1	91
106	AgRP Neurons Regulate Bone Mass. Cell Reports, 2015, 13, 8-14.	6.4	48
107	The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 2015, 21, 263-269.	30.7	1,400
108	Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 2015, 519, 45-50.	27.8	336

#	Article	IF	Citations
109	Hypothalamic Agrp Neurons Drive Stereotypic Behaviors beyond Feeding. Cell, 2015, 160, 1222-1232.	28.9	217
110	Developmental programming of hypothalamic neuroendocrine systems. Frontiers in Neuroendocrinology, 2015, 39, 52-58.	5.2	25
111	A Sympathetic View on Fat by Leptin. Cell, 2015, 163, 26-27.	28.9	4
112	Mitochondrial ROS Signaling in Organismal Homeostasis. Cell, 2015, 163, 560-569.	28.9	915
113	Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding. Cell Metabolism, 2015, 22, 962-970.	16.2	304
114	Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. PLoS ONE, 2015, 10, e0137462.	2.5	11
115	Hypothalamic Sidedness in Mitochondrial Metabolism: New Perspectives. Reproductive Sciences, 2014, 21, 1492-1498.	2.5	10
116	Role of Synaptic Plasticity and EphA5-EphrinA5 Interaction Within the Ventromedial Hypothalamus in Response to Recurrent Hypoglycemia. Diabetes, 2014, 63, 1140-1147.	0.6	5
117	Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding. Cell, 2014, 156, 495-509.	28.9	299
118	Mitochondrial dynamics in the central regulation of metabolism. Nature Reviews Endocrinology, 2014, 10, 650-658.	9.6	125
119	O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell, 2014, 159, 306-317.	28.9	233
120	Function and Dysfunction of Hypocretin/Orexin: An Energetics Point of View. Annual Review of Neuroscience, 2014, 37, 101-116.	10.7	46
121	Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience, 2014, 17, 908-910.	14.8	268
122	PPAR \hat{l}^3 ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. Journal of Clinical Investigation, 2014, 124, 4017-4027.	8.2	50
123	A temperature hypothesis of hypothalamus-driven obesity. Yale Journal of Biology and Medicine, 2014, 87, 149-58.	0.2	6
124	Antibodies to cannabinoid type 1 receptor coâ€react with stomatinâ€like protein 2 in mouse brain mitochondria. European Journal of Neuroscience, 2013, 38, 2341-2348.	2.6	39
125	Natural birth-induced UCP2 in brain development. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 347-350.	5.7	5
126	Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity. Cell, 2013, 155, 188-199.	28.9	249

#	Article	IF	Citations
127	Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance. Cell, 2013, 155, 172-187.	28.9	429
128	Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends in Neurosciences, 2013, 36, 65-73.	8.6	190
129	Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6193-6198.	7.1	29
130	Repeated <i>in vivo</i> exposure of cocaine induces longâ€lasting synaptic plasticity in hypocretin/orexinâ€producing neurons in the lateral hypothalamus in mice. Journal of Physiology, 2013, 591, 1951-1966.	2.9	43
131	AgRP neurons: a switch between peripheral carbohydrate and lipid utilization. EMBO Journal, 2012, 31, 4252-4254.	7.8	16
132	Obesity is associated with hypothalamic injury in rodents and humans. Journal of Clinical Investigation, 2012, 122, 153-162.	8.2	1,448
133	Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to the lateral hypothalamic arousal center. Molecular Metabolism, 2012, 1, 79-85.	6.5	18
134	Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nature Reviews Drug Discovery, 2012, 11, 675-691.	46.4	174
135	Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends in Molecular Medicine, 2012, 18, 52-58.	6.7	180
136	Loss of Autophagy in Pro-opiomelanocortin Neurons Perturbs Axon Growth and Causes Metabolic Dysregulation. Cell Metabolism, 2012, 15, 247-255.	16.2	149
137	Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports, 2012, 13, 1079-1086.	4.5	325
138	Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911.	2.5	52
139	AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nature Neuroscience, 2012, 15, 1108-1110.	14.8	136
140	Plasticity of Brain Feeding Circuits in Response to Food., 2012,, 61-74.		0
141	Ghrelin and the central regulation of feeding and energy balance. Indian Journal of Endocrinology and Metabolism, 2012, 16, 617.	0.4	25
142	Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine, 2011, 17, 1121-1127.	30.7	239
143	High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nature Neuroscience, 2011, 14, 911-918.	14.8	205
144	Synaptic Plasticity of Feeding Circuits: Hormones and Hysteresis. Cell, 2011, 146, 863-865.	28.9	50

#	Article	IF	Citations
145	GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function. Neurobiology of Disease, 2011, 43, 152-162.	4.4	20
146	Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury. Journal of Neuroscience, 2011, 31, 9205-9221.	3.6	50
147	The role of mitochondrial uncoupling proteins in lifespan. Pflugers Archiv European Journal of Physiology, 2010, 459, 269-275.	2.8	53
148	An Oscillatory Switch in mTOR Kinase Activity Sets Regulatory T Cell Responsiveness. Immunity, 2010, 33, 929-941.	14.3	312
149	Estrogen Promotes Parvalbumin Expression in Arcuate Nucleus POMC Neurons. Reproductive Sciences, 2010, 17, 1077-1080.	2.5	24
150	Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14875-14880.	7.1	370
151	Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone. Journal of Neuroscience, 2010, 30, 703-713.	3.6	150
152	Corticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice. Endocrinology, 2010, 151, 5395-5402.	2.8	74
153	Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256.	6.7	171
154	A Sympathetic View on Free Radicals in Diabetes. Neuron, 2010, 66, 809-811.	8.1	5
155	Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 11815-11825.	3.6	194
156	Uncoupling Protein-2 Decreases the Lipogenic Actions of Ghrelin. Endocrinology, 2010, 151, 2078-2086.	2.8	44
157	Uncoupling protein-2 regulates lifespan in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E621-E627.	3.5	98
158	Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal of Neuroscience, 2009, 29, 14057-14065.	3.6	245
159	Feeding signals and brain circuitry. European Journal of Neuroscience, 2009, 30, 1688-1696.	2.6	121
160	A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 2009, 138, 976-989.	28.9	565
161	Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metabolism, 2009, 10, 89-98.	16.2	370
162	Fuel utilization by hypothalamic neurons: roles for ROS. Trends in Endocrinology and Metabolism, 2009, 20, 78-87.	7.1	129

#	Article	IF	Citations
163	Overexpression of UCP2 Protects Thalamic Neurons following Global Ischemia in the Mouse. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1186-1195.	4.3	64
164	UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature, 2008, 454, 846-851.	27.8	633
165	Neuronal control of energy homeostasis. FEBS Letters, 2008, 582, 132-141.	2.8	114
166	Brain circuits regulating energy homeostasis. Regulatory Peptides, 2008, 149, 3-10.	1.9	129
167	Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation. Journal of Neuroscience, 2008, 28, 10766-10771.	3.6	147
168	Estrogen-Induced Hypothalamic Synaptic Plasticity and Pituitary Sensitization in the Control of the Estrogen-Induced Gonadotrophin Surge. Reproductive Sciences, 2007, 14, 101-116.	2.5	80
169	Orexin neuronal changes in the locus coeruleus of the aging rhesus macaque. Neurobiology of Aging, 2007, 28, 1286-1295.	3.1	78
170	A Central Thermogenic-like Mechanism in Feeding Regulation: An Interplay between Arcuate Nucleus T3 and UCP2. Cell Metabolism, 2007, 5, 21-33.	16.2	264
171	Neurobiology of Feeding and Energy Expenditure. Annual Review of Neuroscience, 2007, 30, 367-398.	10.7	312
172	Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nature Medicine, 2007, 13, 89-94.	30.7	373
173	Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. Journal of Clinical Investigation, 2007, 117, 4022-4033.	8.2	103
174	Serotonin Reciprocally Regulates Melanocortin Neurons to Modulate Food Intake. Neuron, 2006, 51, 239-249.	8.1	345
175	Thoughts for Food: Brain Mechanisms and Peripheral Energy Balance. Neuron, 2006, 51, 691-702.	8.1	99
176	Uncoupling protein-2 promotes nigrostriatal dopamine neuronal function. European Journal of Neuroscience, 2006, 24, 32-36.	2.6	35
177	Developmental programming of the hypothalamus: a matter of fat. Nature Medicine, 2006, 12, 52-53.	30.7	70
178	Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neuroscience, 2006, 9, 381-388.	14.8	738
179	Synaptic Plasticity in Energy Balance Regulation. Obesity, 2006, 14, 228S-233S.	3.0	81
180	Cannabinoids, opioids and eating behavior: The molecular face of hedonism?. Brain Research Reviews, 2006, 51, 85-107.	9.0	288

#	Article	IF	Citations
181	Synaptic plasticity mediating leptin's effect on metabolism. Progress in Brain Research, 2006, 153, 47-55.	1.4	10
182	Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. Journal of Clinical Investigation, 2006, 116 , $3229-3239$.	8.2	836
183	Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. Journal of Clinical Investigation, 2006, 116, 1886-1901.	8.2	281
184	Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. Journal of Neurochemistry, 2005, 93, 493-501.	3.9	99
185	Mitochondrial uncoupling proteins in the cns: in support of function and survival. Nature Reviews Neuroscience, 2005, 6, 829-840.	10.2	321
186	The hardship of obesity: a soft-wired hypothalamus. Nature Neuroscience, 2005, 8, 561-565.	14.8	216
187	Agouti-related peptide–expressing neurons are mandatory for feeding. Nature Neuroscience, 2005, 8, 1289-1291.	14.8	663
188	Obesity and the Neuroendocrine Control of Energy Homeostasis: The Role of Spontaneous Locomotor Activity. Journal of Nutrition, 2005, 135, 1314-1319.	2.9	56
189	A Novel Growth Hormone Secretagogue-1a Receptor Antagonist That Blocks Ghrelin-Induced Growth Hormone Secretion but Induces Increased Body Weight Gain. Neuroendocrinology, 2005, 81, 339-349.	2.5	91
190	Uncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 184-191.	3.6	181
191	Input organization and plasticity of hypocretin neurons. Cell Metabolism, 2005, 1, 279-286.	16.2	185
192	Unraveling neuronal circuitry regulating energy homeostasis: Plasticity in feeding circuits. Drug Discovery Today: Disease Models, 2005, 2, 191-196.	1.2	2
193	The Anatomy of Hypocretin Neurons. , 2005, , 77-93.		0
194	Central Administration of Ghrelin and Agouti-Related Protein (83–132) Increases Food Intake and Decreases Spontaneous Locomotor Activity in Rats. Endocrinology, 2004, 145, 4645-4652.	2.8	199
195	Novel analogs of ghrelin: physiological and clinical implications. European Journal of Endocrinology, 2004, 151 Suppl 1, S71-S75.	3.7	66
196	Brain Circuits Regulating Energy Homeostasis. Neuroscientist, 2004, 10, 235-246.	3.5	63
197	Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4661-4666.	7.1	341
198	Interaction between the Corticotropin-Releasing Factor System and Hypocretins (Orexins): A Novel Circuit Mediating Stress Response. Journal of Neuroscience, 2004, 24, 11439-11448.	3.6	406

#	Article	IF	Citations
199	Direct visual and circadian pathways target neuroendocrine cells in primates. European Journal of Neuroscience, 2004, 20, 2767-2776.	2.6	20
200	Sex differences in adult suprachiasmatic nucleus neurons emerging late prenatally in rats. European Journal of Neuroscience, 2004, 19, 2488-2496.	2.6	23
201	The floating blueprint of hypothalamic feeding circuits. Nature Reviews Neuroscience, 2004, 5, 662-667.	10.2	103
202	Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin. Science, 2004, 304, 110-115.	12.6	890
203	Ghrelin., 2004, , 150-156.		0
204	Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochemical Pharmacology, 2003, 65, 1917-1921.	4.4	77
205	The Interactive Language of the Hypothalamus for the Gonadotropin Releasing Hormone (GNRH) System. Journal of Neuroendocrinology, 2003, 9, 569-576.	2.6	73
206	The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron, 2003, 37, 649-661.	8.1	1,465
207	Fasting Activates the Nonhuman Primate Hypocretin (Orexin) System and Its Postsynaptic Targets. Endocrinology, 2003, 144, 3774-3778.	2.8	105
208	Ghrelin in Hypothalamic Regulation of Energy Balance. Current Topics in Medicinal Chemistry, 2003, 3, 921-927.	2.1	33
209	Uncoupling Protein 2 Prevents Neuronal Death Including that Occurring during Seizures: A Mechanism for Preconditioning. Endocrinology, 2003, 144, 5014-5021.	2.8	177
210	Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson's Disease. Endocrinology, 2003, 144, 2757-2760.	2.8	112
211	Mitochondrial Uncoupling Proteins: Regulators of Retinal Cell Death. Advances in Experimental Medicine and Biology, 2003, 533, 269-275.	1.6	5
212	Endocannabinoids and the regulation of body fat: the smoke is clearing. Journal of Clinical Investigation, 2003, 112, 323-326.	8.2	57
213	Ghrelin as a Potential Anti-Obesity Target. Current Pharmaceutical Design, 2003, 9, 1383-1395.	1.9	68
214	Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochemical Pharmacology, 2002, 64, 363-367.	4.4	111
215	Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold. Biochemical Pharmacology, 2002, 64, 369-374.	4.4	31
216	Uncoupling protein 2 in primary pain and temperature afferents of the spinal cord. Brain Research, 2002, 955, 260-263.	2,2	10

#	Article	lF	Citations
217	A GABA-neuropeptide Y (NPY) interplay in LH release. Peptides, 2001, 22, 473-481.	2.4	26
218	Monosynaptic Pathway Between the Arcuate Nucleus Expressing Glial Type II Iodothyronine 5′-Deiodinase mRNA and the Median Eminence-Projective TRH Cells of the Rat Paraventricular Nucleus. Journal of Neuroendocrinology, 2001, 10, 731-742.	2.6	51
219	Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 2001, 411, 480-484.	27.8	2,008
220	Minireview: Ghrelin and the Regulation of Energy Balanceâ€"A Hypothalamic Perspective. Endocrinology, 2001, 142, 4163-4169.	2.8	523
221	Minireview: Ghrelin and the Regulation of Energy Balance-A Hypothalamic Perspective. Endocrinology, 2001, 142, 4163-4169.	2.8	182
222	AMPA receptors colocalize with neuropeptide-Y- and galanin-containing, but not with dopamine, neurons of the female rat arcuate nucleus: a semiquantitative immunohistochemical colocalization study. Experimental Brain Research, 2000, 133, 532-537.	1.5	6
223	Mitochondrial Uncoupling Protein 2 (UCP2) in the Nonhuman Primate Brain and Pituitary**This work was supported by NSF Grant IBN-9728581, NIH Grants NS-36111, MH-59847, RR-00163, HD-29186, and HD-37186 Endocrinology, 2000, 141, 4226-4238.	2.8	45
224	Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regulatory Peptides, 2000, 87, 19-24.	1.9	149
225	Mitochondrial Uncoupling Protein 2 (UCP2) in the Nonhuman Primate Brain and Pituitary. Endocrinology, 2000, 141, 4226-4238.	2.8	11
226	Synaptic Interaction between Hypocretin (Orexin) and Neuropeptide Y Cells in the Rodent and Primate Hypothalamus: A Novel Circuit Implicated in Metabolic and Endocrine Regulations. Journal of Neuroscience, 1999, 19, 1072-1087.	3.6	471
227	Interacting Appetite-Regulating Pathways in the Hypothalamic Regulation of Body Weight*. Endocrine Reviews, 1999, 20, 68-100.	20.1	1,203
228	Estrogen receptor-Ã in the raphe serotonergic and supramammillary area calretinin-containing neurons of the female rat. Experimental Brain Research, 1999, 128, 417-420.	1.5	33
229	Estrogen receptor \hat{l}^2 and progesterone receptor mRNA in the intergeniculate leaflet of the female rat. Brain Research, 1999, 844, 196-200.	2.2	10
230	Estrogen and microglia: A regulatory system that affects the brain. , 1999, 40, 484-496.		135
231	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. Journal of Comparative Neurology, 1999, 415, 145-159.	1.6	636
232	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. , 1999, 415, 145.		3
233	Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers. Journal of Neuroscience, 1999, 19, 10417-10427.	3.6	163
234	Neuroendocrine Interactions between Galanin, Opioids, and Neuropeptide Y in the Control of Reproduction and Appetite a. Annals of the New York Academy of Sciences, 1998, 863, 236-240.	3.8	61

#	Article	IF	Citations
235	Gender-specific apposition between vasoactive intestinal peptide-containing axons and gonadotrophin-releasing hormone-producing neurons in the rat. Brain Research, 1998, 795, 277-281.	2.2	64
236	Leptin receptors in estrogen receptor-containing neurons of the female rat hypothalamus. Brain Research, 1998, 812, 256-259.	2.2	96
237	Tracing of the entorhinal-hippocampal pathway in vitro. , 1998, 8, 57-68.		41
238	Leptin Receptor Immunoreactivity is Associated with the Golgi Apparatus of Hypothalamic Neurones and Glial Cells. Journal of Neuroendocrinology, 1998, 10, 647-650.	2.6	85
239	Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone. Regulatory Peptides, 1998, 75-76, 117-126.	1.9	36
240	Fasting-Induced Increase in Type II lodothyronine Deiodinase Activity and Messenger Ribonucleic Acid Levels Is Not Reversed by Thyroxine in the Rat Hypothalamus1. Endocrinology, 1998, 139, 2879-2884.	2.8	124
241	An Alternate Pathway for Visual Signal Integration into the Hypothalamo-Pituitary Axis: Retinorecipient Intergeniculate Neurons Project to Various Regions of the Hypothalamus and Innervate Neuroendocrine Cells Including Those Producing Dopamine. Journal of Neuroscience, 1998, 18. 1546-1558.	3.6	54
242	Kainate Glutamate Receptors (GluR5–7) in the Rat Arcuate Nucleus: Relationship to Tanycytes, Astrocytes, Neurons and Gonadal Steroid Receptors. Journal of Neuroendocrinology, 1998, 10, 239-247.	2.6	35
243	Suprachiasmatic Efferents Avoid Phenestrated Capillaries but Innervate Neuroendocrine Cells, Including Those Producing Dopamine*. Endocrinology, 1997, 138, 1312-1320.	2.8	60
244	Aromatase in axonal processes of early postnatal hypothalamic and limbic areas including the cingulate cortex. Journal of Steroid Biochemistry and Molecular Biology, 1997, 61, 349-357.	2.5	33
245	Lack of Gonadotropin-Positive Feedback in the Male Rat Is Associated with Lack of Estrogen-Induced Synaptic Plasticity in the Arcuate Nucleus. Neuroendocrinology, 1997, 65, 136-140.	2.5	45
246	Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Research, 1997, 756, 283-286.	2.2	266
247	Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies. Journal of Comparative Neurology, 1997, 384, 569-579.	1.6	210
248	Suprachiasmatic Efferents Avoid Phenestrated Capillaries but Innervate Neuroendocrine Cells, Including Those Producing Dopamine. Endocrinology, 1997, 138, 1312-1320.	2.8	19
249	Morphological Evidence for a Galanin-Opiate Interaction in the Rat Mediobasal Hypothalamus. Journal of Neuroendocrinology, 1995, 7, 579-588.	2.6	41
250	Naloxone reduces the feeding evoked by intracerebroventricular galanin injection. Physiology and Behavior, 1994, 56, 811-813.	2.1	58
251	Luteinizing Hormone-Releasing Hormone and Gamma-Aminobutyric Acid Neurons in the Medial Preoptic Area are Synaptic Targets of Dopamine Axons Originating in Anterior Periventricular Areas. Journal of Neuroendocrinology, 1993, 5, 71-79.	2.6	50
252	Ghrelin: an orexigenic signal from the stomach. , 0, , 266-284.		0