John S Waye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5994626/publications.pdf

Version: 2024-02-01

55	1,079	15	32
papers	citations	h-index	g-index
55	55	55	2148
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improved DNA extraction from ancient bones using silica-based spin columns. American Journal of Physical Anthropology, 1998, 105, 539-543.	2.1	501
2	Dopamine D4 receptor variant, D4GLYCINE194, in Africans, but not in Caucasians: No association with Schizophrenia. American Journal of Medical Genetics Part A, 1994, 54, 384-390.	2.4	63
3	Clinical Next-Generation Sequencing Pipeline Outperforms a Combined Approach Using Sanger Sequencing and Multiplex Ligation-Dependent Probe Amplification in Targeted Gene Panel Analysis. Journal of Molecular Diagnostics, 2016, 18, 657-667.	2.8	47
4	Smith-Lemli-Opitz (RHS) syndrome: holoprosencephaly and homozygous IVS8-1G?C genotype. American Journal of Medical Genetics Part A, 2001, 103, 75-80.	2.4	41
5	Frequency and ethnic distribution of the commonDHCR7 mutation in Smith-Lemli-Opitz syndrome. American Journal of Medical Genetics Part A, 2001, 102, 383-386.	2.4	40
6	PCR-based diagnosis of the Filipino (??FIL) and Thai (??THAI) ?-thalassemia-1 deletions. American Journal of Hematology, 2000, 63, 54-56.	4.1	32
7	Identification of an extensive ζâ€Î± globin gene deletion in a Chinese individual. British Journal of Haematology, 1992, 80, 378-380.	2.5	28
8	Hemoglobin H (Hb H) disease in Canada: Molecular diagnosis and review of 116 cases. American Journal of Hematology, 2001, 68, 11-15.	4.1	27
9	Data sharing as a national quality improvement program: reporting on BRCA1 and BRCA2 variant-interpretation comparisons through the Canadian Open Genetics Repository (COGR). Genetics in Medicine, 2018, 20, 294-302.	2.4	27
10	Anomalous Migration of PCR Products Using Nondenaturing Polyacrylamide Gel Electrophoresis: The Amelogenin Sex-Typing System. Journal of Forensic Sciences, 1994, 39, 1356-1359.	1.6	27
11	Complications in the genotypic molecular diagnosis of pseudo arylsulfatase A deficiency. American Journal of Medical Genetics Part A, 1993, 45, 631-637.	2.4	26
12	Hb S/ $\hat{l}^2\hat{A}^o$ -Thalassemia due to the Ë ∞ 1.4-kb deletion is associated with a relatively mild phenotype. American Journal of Hematology, 1991, 38, 108-112.	4.1	23
13	Clinical evaluation of a hemochromatosis nextâ€generation sequencing gene panel. European Journal of Haematology, 2017, 98, 228-234.	2.2	20
14	Adapting the ACMG/AMP variant classification framework: A perspective from the ClinGen Hemoglobinopathy Variant Curation Expert Panel. Human Mutation, 2022, 43, 1089-1096.	2. 5	20
15	Prenatal diagnosis of Smith-Lemli-Opitz syndrome (SLOS) byDHCR7 mutation analysis. Prenatal Diagnosis, 2007, 27, 638-640.	2.3	18
16	The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS ONE, 2017, 12, e0173991.	2.5	18
17	The prenatal identification of fetal compatibility in neonatal alloimmune thrombocytopenia using amniotic fluid and variable number of tandem repeat (VNTR) analysis. British Journal of Haematology, 1995, 91, 742-746.	2.5	17
18	Rapid molecular prenatal diagnosis of Smith-Lemli-Opitz syndrome. American Journal of Medical Genetics Part A, 2001, 102, 387-388.	2.4	9

#	Article	IF	CITATIONS
19	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. PLoS ONE, 2019, 14, e0225656.	2.5	9
20	Outcomes of haemoglobin Bart's hydrops fetalis following intrauterine transfusion in Ontario, Canada. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2021, 106, 51-56.	2.8	9
21	NOVEL Î ² -THALASSEMIA MUTATION IN A Î ² -THALASSEMIA INTERMEDIA PATIENT [POLY A (AATAAA →GATAAA)]. Hemoglobin, 2001, 25, 103-105.	0.8	8
22	Clinical course and molecular characterization of a compound heterozygote for sickle hemoglobin and hemoglobin kenya. American Journal of Hematology, 1992, 41, 289-291.	4.1	7
23	Improved DNA extraction from ancient bones using silicaâ€based spin columns. American Journal of Physical Anthropology, 1998, 105, 539-543.	2.1	7
24	A novel and de novo spontaneous point mutation (Glu271STOP) of the antithrombin gene results in a type I deficiency and thrombophilia., 1999, 60, 126-129.		6
25	Hb S/ \hat{A} +-thalassemia due to Hb sickle and a novel deletion of DNase I hypersensitive sites HS3 and HS4 of the \hat{A} locus control region. Haematologica, 2015, 100, e166-e168.	3.5	6
26	\hat{l}_{\pm} -Thalassemia Caused by Two Novel Splice Mutations of the \hat{l}_{\pm} 2-Globin Gene: IVS-I-1 (G>A and G>T). Hemoglobin, 2009, 33, 519-522.	0.8	5
27	Normal Hb A ₂ β-Thalassemia Trait: Frameshift Mutation (<i>HBB</i> : c.187_251dup) in <i>Cis</i> with the Hb A _{2'} δ-Globin Gene Missense Mutation (<i>HBD</i> : c.49G>C). Hemoglobin, 2013, 37, 201-204.	0.8	5
28	Identification of nine novelDHCR7 missense mutations in patients with Smith-Lemli-Opitz syndrome (SLOS). Human Mutation, 2005, 26, 59-59.	2.5	3
29	β ⁺ -Thalassemia Trait Due to a Novel Mutation in the β-Globin Gene Promoter: ∰26 (A>C) [HBB c.∰76A>C]. Hemoglobin, 2011, 35, 84-86.	0.8	3
30	Multiplex Allele-Specific PCR for Simultaneous Detection of H63D and C282Y HFE Mutations in Hereditary Hemochromatosis. journal of applied laboratory medicine, The, 2018, 3, 10-17.	1.3	3
31	Hepatoblastoma in a Child With Early-onset Cirrhosis. Journal of Pediatric Hematology/Oncology, 2019, 41, e30-e33.	0.6	3
32	Novel 27.9 kb α ⁰ â€thalassemia deletion in a Filipino woman. American Journal of Hematology, 2009, 84, 197-198.	4.1	2
33	Mild \hat{l}^2 (sup>+-Thalassemia Associated With Two Linked Sequence Variants: IVS-II-839 (T>C) and IVS-II-844 (C>A). Hemoglobin, 2013, 37, 378-386.	0.8	2
34	Sudanese $(\langle b \rangle \hat{i}' \langle b \rangle \hat{i}^2 \langle b \rangle) \langle sup \rangle 0 \langle sup \rangle$. Thalassemia: Identification and Characterization of a Novel 9.6â \in ‰kb Deletion. Hemoglobin, 2015, 39, 368-370.	0.8	2
35	Characterization of Two Novel Deletions Involving the 5′ Region of the β-Globin Gene. Hemoglobin, 2017, 41, 239-242.	0.8	2
36	A Novel Human Î ² -Globin Gene Variant [Hb London-Ontario,HBB: c.332T>G] is Associated with Transfusion-Dependent Anemia in a Patient with a Hemoglobin Electrophoresis Pattern Consistent with Î ² -Thalassemia Trait. Hemoglobin, 2019, 43, 129-131.	0.8	2

#	Article	IF	CITATIONS
37	Novel High Oxygen Affinity Hemoglobin Variant in a Patient with Polycythemia: Hb Kennisis [β85(F1)Pheâ†'Leu (TTT>TTG); HBB: c.258T>G]. Hemoglobin, 2020, 44, 10-12.	0.8	2
38	Improved DNA extraction from ancient bones using silica-based spin columns., 1998, 105, 539.		2
39	Allele frequency data for VNTR locus D17S79: Identification of an internalHaeIII polymorphism in the black population. Human Mutation, 1994, 3, 248-253.	2.5	1
40	Hb North York [β117(G19)Hisâ†'Asp]: A New β Chain Hemoglobin Variant. Hemoglobin, 2009, 33, 51-53.	0.8	1
41	α+-Thalassemia Trait Caused by a Frameshift Mutation in Exon 2 of the α2-Globin Gene [HBA2 c.244delT]. Hemoglobin, 2012, 36, 205-207.	0.8	1
42	\hat{l}_{\pm} +-Thalassemia Due to a Frameshift Mutation of the \hat{l}_{\pm} 2-Globin Gene [codons 55/56 (+T) or HBA2: c.168dup]. Hemoglobin, 2015, 39, 209-210.	0.8	1
43	Novel Mutation of the Translation Initiation Codon of the α1-Globin Gene (ATG>AAG orHBA1:c.2T>A). Hemoglobin, 2016, 40, 369-370.	0.8	1
44	α0-Thalassemia Due to a 90.7 kb Deletion (– –NFLD). Hemoglobin, 2017, 41, 218-219.	0.8	1
45	Targeted Gene Sequencing to Identify Polymorphisms in the Protein C and EPCR Genes in Patients with Unprovoked Venous Thromboembolism Blood, 2009, 114, 454-454.	1.4	1
46	DHCR7 genotypes of cousins with Smith-Lemli-Opitz syndrome. American Journal of Medical Genetics Part A, 2001, 100, 162-163.	2.4	0
47	Non-Thalassemic Phenotype Associated With the -83 (G > A) Mutation of theβ-Globin Gene Promoter (HBB:) Tj E	TQ ₈ 1 1 0.784
48	Microcytosis in patients with haemoglobin C trait: is αâ€thalassaemia trait to blame?. British Journal of Haematology, 2020, 191, e129-e131.	2.5	0
49	Dysregulation of C10orf55 Expression in Megakaryocytic Cell Lineage From Quebec Platelet Disorder Individuals. Blood, 2011, 118, 2274-2274.	1.4	0
50	Quebec Platelet Disorder Is Associated With Greater Than Expected Increases In Urokinase Plasminogen Activator In Granulocytes and Monocytes. Blood, 2013, 122, 3573-3573.	1.4	0
51	Compound Heterozygosity for Hb S and a Novel Deletion of Dnase I Hypersensitivity Sites HS3 and HS4 of β-Globin Locus Control Region Results in Hb S/β+-Thalassemia Phenotype. Blood, 2014, 124, 2692-2692.	1.4	0
52	An evaluation of genetic causes and environmental risks for bilateral optic atrophy., 2019, 14, e0225656.		0
53	An evaluation of genetic causes and environmental risks for bilateral optic atrophy. , 2019, 14, e0225656.		0
54	An evaluation of genetic causes and environmental risks for bilateral optic atrophy., 2019, 14, e0225656.		0

ARTICLE IF CITATIONS

An evaluation of genetic causes and environmental risks for bilateral optic atrophy., 2019, 14, e0225656.