
Jorge MilÃ;n-Carrillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5994232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. Journal of Cereal Science, 2010, 52, 502-508.	1.8	147
2	Extrusion improved the antiâ€inflammatory effect of amaranth (<i><scp>A</scp>maranthus) Tj ETQq0 0 0 rgBT and mouse <scp>RAW</scp> 264.7 macrophages by preventing activation of <scp>NF</scp>â€ie<scp>B</scp> signaling. Molecular Nutrition and Food Research, 2014, 58, 1028-1041.</i>	Overlock 1.5	10 Tf 50 712 82
3	Identification of Bioactive Peptide Sequences from Amaranth (<i>Amaranthus hypochondriacus</i>) Seed Proteins and Their Potential Role in the Prevention of Chronic Diseases. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 139-158.	5.9	76
4	Tempeh flour from chickpea (Cicer arietinum L.) nutritional and physicochemical properties. Food Chemistry, 2008, 106, 106-112.	4.2	66
5	Increasing the Antioxidant Activity, Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods for Human Nutrition, 2014, 69, 196-202.	1.4	63
6	Phytochemicals and Antioxidant Capacity of Tortillas Obtained after Lime-Cooking Extrusion Process of Whole Pigmented Mexican Maize. Plant Foods for Human Nutrition, 2012, 67, 178-185.	1.4	57
7	Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chemistry, 2021, 343, 128394.	4.2	55
8	Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess. Plant Foods for Human Nutrition, 2017, 72, 345-352.	1.4	51
9	Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (<i>Cicer arietinum</i> L.) cultivars. International Journal of Food Sciences and Nutrition, 2013, 64, 69-76.	1.3	49
10	The optimization of the extrusion process when using maize flour with a modified amino acid profile for making tortillas. International Journal of Food Science and Technology, 2006, 41, 727-736.	1.3	45
11	Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea) Tj ETQq1 1).784314 2.5	rgBT /Overloo
12	Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean. Plant Foods for Human Nutrition, 2016, 71, 218-224.	1.4	29
13	Optimal Design of Distributed Algae-Based Biorefineries Using CO2 Emissions from Multiple Industrial Plants. Industrial & Engineering Chemistry Research, 2016, 55, 2345-2358.	1.8	28
14	Optimization of Extrusion Process for Producing High Antioxidant Instant Amaranth (<i>Amaranthus hypochondriacus</i> L.) Flour Using Response Surface Methodology. Applied Mathematics, 2012, 03, 1516-1525.	0.1	28
15	Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process. Journal of Cereal Science, 2016, 69, 64-70.	1.8	27
16	Solid-state bioconversion of chickpea (<i>Cicer arietinum</i> L.) by <i>Rhizopus oligosporus</i> to improve total phenolic content, antioxidant activity and hypoglycemic functionality. International Journal of Food Sciences and Nutrition, 2014, 65, 558-564.	1.3	23
17	Improving Polyphenolic Compounds: Antioxidant Activity in Chickpea Sprouts through Elicitation with Hydrogen Peroxide. Foods, 2020, 9, 1791.	1.9	23
18	Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Science, 2014, 12, 30.	0.7	22

#	Article	IF	CITATIONS
19	Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking. Plant Foods for Human Nutrition, 2017, 72, 314-320.	1.4	21
20	Nixtamalised flour and tortillas from transgenic maize (Zea mays L.) expressing amarantin: Technological and nutritional properties. Food Chemistry, 2009, 114, 50-56.	4.2	20
21	Phytochemical Compounds and Antioxidant Activity Modified by Germination and Hydrolysis in Mexican Amaranth. Plant Foods for Human Nutrition, 2020, 75, 192-199.	1.4	16
22	Physical, Compositional, and Wetâ€Milling Characteristics of Mexican Blue Maize (<i>Zea mays</i> L.) Landrace. Cereal Chemistry, 2015, 92, 491-496.	1.1	14
23	Germination in Optimal Conditions as Effective Strategy to Improve Nutritional and Nutraceutical Value of Underutilized Mexican Blue Maize Seeds. Plant Foods for Human Nutrition, 2019, 74, 192-199.	1.4	14
24	Optimal design of integrated agricultural water networks. Computers and Chemical Engineering, 2016, 84, 63-82.	2.0	13
25	Characterization of Peptides Found in Unprocessed and Extruded Amaranth (Amaranthus) Tj ETQq1 1 0.78431 16, 8536-8554.	.4 rgBT /Ove 1.8	erlock 10 Tf 12
26	Expression of an engineered acidic-subunit 11S globulin of amaranth carrying the antihypertensive peptides VY, in transgenic tomato fruits. Plant Cell, Tissue and Organ Culture, 2014, 118, 305-312.	1.2	11
27	Enhancement of nutritional properties, and antioxidant and antihypertensive potential of black common bean seeds by optimizing the solid state bioconversion process. International Journal of Food Sciences and Nutrition, 2015, 66, 498-504.	1.3	11
28	Production of nixtamalized flour and tortillas from amarantin transgenic maize lime-cooked in a thermoplastic extruder. Journal of Cereal Science, 2013, 58, 465-471.	1.8	9
29	Expression of the acidic-subunit of amarantin, carrying the antihypertensive biopeptides VY, in cell suspension cultures of Nicotiana tabacum NT1. Plant Cell, Tissue and Organ Culture, 2013, 113, 315-322.	1.2	8
30	In vitro digestion properties of native isolated starches from Mexican blue maize (Zea mays L.) landrace. LWT - Food Science and Technology, 2018, 93, 384-389.	2.5	8
31	Nutritional and antioxidant potential of a desert underutilized legume – tepary bean (Phaseolus) Tj ETQq1 1	0.784314 r 0.8	gBT /Overloc
32	Characterization of tannins from two wild blackberries (Rubus spp) by LC–ESI–MS/MS, NMR and antioxidant capacity. Journal of Food Measurement and Characterization, 2019, 13, 2265-2274.	1.6	8
33	High Antioxidant Activity Mixture of Extruded Whole Quality Protein Maize and Common Bean Flours for Production of a Nutraceutical Beverage Elaborated with a Traditional Mexican Formulation. Plant Foods for Human Nutrition, 2012, 67, 450-456.	1.4	7
34	Assessing the Sensitizing and Allergenic Potential of the Albumin and Globulin Fractions from Amaranth (Amaranthus hypochondriacus) Grains before and after an Extrusion Process. Medicina (Lithuania), 2019, 55, 72.	0.8	6
35	High-Antioxidant Capacity Beverages Based on Extruded and Roasted Amaranth (<i>Amaranthus) Tj ETQq1 1 C</i>	.784314 rg 0.5	;BT <u>/</u> Overlock
36	Antioxidant and Antimutagenic Activities of Optimized Extruded Desi Chickpea (Cicer arietinum L) Flours. Journal of Pharmacy and Nutrition Sciences (discontinued), 2013, 3, 38-47.	0.2	3

#	Article	IF	CITATIONS
37	Profiling modifications in physicochemical, chemical and antioxidant properties of wild blackberry (Rubus sp.) during fermentation with EC 1118 yeast. Journal of Food Science and Technology, 2021, 58, 4654-4665.	1.4	2
38	Functional gluten-free beverage elaborated from whole quinoa and defatted chia extruded flours: antioxidant and antihypertensive potentials. Acta Universitaria, 0, 32, 1-22.	0.2	2
39	Gluten-free healthy snack with high nutritional and nutraceutical value elaborated from a mixture of extruded underutilized grains (quality protein maize/tepary bean). Acta Universitaria, 0, 31, 1-18.	0.2	1
40	Alimento funcional para adultos mayores producido por extrusión a partir de granos integrales de maÃz/frijol común. Acta Universitaria, 0, 31, 1-18.	0.2	0