Antonio A Portugal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5994215/publications.pdf Version: 2024-02-01

ΑΝΤΟΝΙΟ Α ΡΟΡΤΙΙζΑΙ

#	Article	IF	CITATIONS
1	Biorefining of <i>Pinus pinaster</i> Stump Wood for Ethanol Production and Lignin Recovery. Chemical Engineering and Technology, 2021, 44, 1043-1050.	1.5	5
2	Clean syngas production by gasification of lignocellulosic char: State of the art and future prospects. Journal of Industrial and Engineering Chemistry, 2021, 101, 1-20.	5.8	10
3	Reinforcement Strategies of Silica Aerogels for Thermal Insulation Applications. Proceedings (mdpi), 2020, 57, 2.	0.2	0
4	Production of Aromatic Compounds by Catalytic Depolymerization of Technical and Downstream Biorefinery Lignins. Biomolecules, 2020, 10, 1338.	4.0	12
5	New insights in the fractionation of Pinus pinaster wood: sequential autohydrolysis, soda ethanol organosolv and acidic precipitation. Industrial Crops and Products, 2020, 152, 112499.	5.2	18
6	Optimization of Polyamide Pulp-Reinforced Silica Aerogel Composites for Thermal Protection Systems. Polymers, 2020, 12, 1278.	4.5	18
7	COMPARAÇÃO DE PROCESSOS E TIPOS DE 2ª GERAÇÃO DE BIOCOMBUSTÃVEIS: UMA AVALIAÇÃO DO POTENCIAL BRASILEIRO E PORTUGUÊS. Revista Gestão & Sustentabilidade Ambiental, 2020, 9, 255.	0.1	0
8	Syngas production via catalytic oxidative steam reforming of glycerol using a Co/Al coprecipitated catalyst and different bed fillers. Fuel Processing Technology, 2019, 189, 120-133.	7.2	24
9	Influence of Structure-Directing Additives on the Properties of Poly(methylsilsesquioxane) Aerogel-Like Materials. Gels, 2019, 5, 6.	4.5	11
10	Gasification of Charcoal in Air, Oxygen, and Steam Mixtures over a γ-Al ₂ O ₃ Fluidized Bed. Energy & Fuels, 2018, 32, 406-415.	5.1	6
11	Liquid-Phase Hydrodeoxygenation of Guaiacol over Mo2C Supported on Commercial CNF. Effects of Operating Conditions on Conversion and Product Selectivity. Catalysts, 2018, 8, 127.	3.5	28
12	Towards improved adsorption of phenolic compounds by surface chemistry tailoring of silica aerogels. Journal of Sol-Gel Science and Technology, 2017, 84, 409-421.	2.4	9
13	Exploring the Versatile Surface Chemistry of Silica Aerogels for Multipurpose Application. MRS Advances, 2017, 2, 3511-3519.	0.9	17
14	Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters. New Journal of Chemistry, 2017, 41, 6742-6759.	2.8	25
15	Adsorption of phenol on silica aerogels using a stirred tank and a fixed bed column. Ciência & Tecnologia Dos Materiais, 2017, 29, e229-e233.	0.5	6
16	Methylsilsesquioxane-Based Aerogel Systems—Insights into the Role of the Formation of Molecular Clusters. Journal of Physical Chemistry A, 2016, 120, 4079-4088.	2.5	21
17	A new trend for development of mechanically robust hybrid silica aerogels. Materials Letters, 2016, 179, 206-209.	2.6	19
18	High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core–Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide. ACS Applied Materials & Interfaces, 2016, 8, 11366-11378.	8.0	56

ANTONIO A PORTUGAL

#	Article	IF	CITATIONS
19	Novel flexible, hybrid aerogels with vinyl- and methyltrimethoxysilane in the underlying silica structure. Journal of Materials Science, 2016, 51, 6781-6792.	3.7	48
20	Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Construction and Building Materials, 2016, 127, 43-48.	7.2	187
21	Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science, 2016, 236, 1-27.	14.7	270
22	Design of multifunctional magnetic hybrid silica aerogels with improved properties. Microporous and Mesoporous Materials, 2016, 232, 227-237.	4.4	16
23	Liquid glycerol: Experimental densities at pressures of up to 25 MPa, and some derived thermodynamic properties. Journal of Chemical Thermodynamics, 2016, 101, 64-77.	2.0	15
24	Nanocrystalline ZnO Thin Films – Influence of Sol-gel Conditions on the Underlying Chemistry and Film Microstructure and Transparency. Materials Today: Proceedings, 2015, 2, 49-56.	1.8	6
25	Controlled phase formation of nanocrystalline iron oxides/hydroxides in solution – An insight on the phase transformation mechanisms. Materials Chemistry and Physics, 2015, 163, 88-98.	4.0	22
26	Effect of additives on the properties of silica based aerogels synthesized from methyltrimethoxysilane (MTMS). Journal of Supercritical Fluids, 2015, 106, 85-92.	3.2	39
27	Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 260-269.	4.7	60
28	Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties. Journal of Physical Chemistry C, 2015, 119, 7689-7703.	3.1	79
29	Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Journal of Materials Chemistry A, 2015, 3, 1594-1600.	10.3	85
30	Correlation and prediction of biodiesel density for extended ranges of temperature and pressure. Fuel, 2015, 141, 23-38.	6.4	35
31	Development of an Innovative 3D Simulator for Structured Polymeric Fibrous Materials and Liquid Droplets. Advanced Structured Materials, 2015, , 301-321.	0.5	2
32	The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials & Design, 2014, 59, 1-9.	5.1	318
33	An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids, 2014, 385, 55-74.	3.1	555
34	Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous and Mesoporous Materials, 2014, 197, 116-129.	4.4	115
35	Poly(ethylene glycol)-block-poly(4-vinyl pyridine) as a versatile block copolymer to prepare nanoaggregates of superparamagnetic iron oxide nanoparticles. Journal of Materials Chemistry B, 2014, 2, 1565.	5.8	22
36	Speed of sound in pure fatty acid methyl esters and biodiesel fuels. Fuel, 2014, 116, 242-254.	6.4	39

ANTONIO A PORTUGAL

#	Article	IF	CITATIONS
37	Silica based aerogelâ€like materials obtained by quick microwave drying. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 380-385.	0.9	18
38	Effect of the Drying Conditions on the Microstructure of Silica Based Xerogels and Aerogels. Journal of Nanoscience and Nanotechnology, 2012, 12, 6828-6834.	0.9	56
39	Comparison of Two Robust Alternatives to the Box–Draper Determinant Criterion in Multiresponse Kinetic Parameter Estimation. Industrial & Engineering Chemistry Research, 2012, 51, 1118-1130.	3.7	Ο
40	Solâ€gel synthesis and washing of amorphous gâ€FeO(OH) xerogels. Materialwissenschaft Und Werkstofftechnik, 2012, 43, 427-434.	0.9	4
41	Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L Journal of Supercritical Fluids, 2012, 68, 52-63.	3.2	25
42	Measurements of pVT, viscosity, and surface tension of trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate ionic liquid and modelling with equations of state. Journal of Chemical Thermodynamics, 2012, 47, 183-196.	2.0	43
43	MgAl2O4 spinel synthesis by combustion and detonation reactions: A thermochemical evaluation. Journal of the European Ceramic Society, 2012, 32, 3161-3170.	5.7	24
44	Study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and/or methyltrimethoxysilane precursors for aerospace applications. Journal of Sol-Gel Science and Technology, 2012, 61, 151-160.	2.4	47
45	1D AND 2D MODELING AND SIMULATION OF RADIAL COMBUSTION PROPAGATION ON Fe2O3/AI THERMITE SYSTEMS. Computational Thermal Sciences, 2012, 4, 137-149.	0.9	4
46	Characterization of iron(III) oxide/hydroxide nanostructured materials produced by sol–gel technology based on the Fe(NO3)3·9H2O–C2H5OH–CH3CHCH2O system. Materials Chemistry and Physics, 2011, 130, 548-560.	4.0	15
47	Three dimensional modelling of fibrous materials and experimental validation. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 370-374.	0.9	22
48	Finite-sample comparison of robust estimators for nonlinear regression using Monte Carlo simulation: Part I. Univariate response models. Computers and Chemical Engineering, 2011, 35, 530-544.	3.8	3
49	Sol–gel synthesis of iron(III) oxyhydroxide nanostructured monoliths using Fe(NO3)3A·9H2O/CH3CH2OH/NH4OH ternary system. Journal of Physics and Chemistry of Solids, 2011, 72, 678-684.	4.0	14
50	Coding a Simulation Model of the 3D Structure of Paper. Lecture Notes in Computer Science, 2010, , 299-310.	1.3	7
51	Adaptive Collocation Methods for the Solution of Partial Differential Equations. , 2010, , 499-504.		0
52	Simulation of Membrane Separations Using a Modified Maxwell-Stefan Model. Chemical Product and Process Modeling, 2009, 4, .	0.9	1
53	RADIAL COMBUSTION DYNAMICS IN Fe[sub 2]O[sub 3]â^•Al THERMITE: VARIABILITY OF THE FLAME PROPAGATION PROFILES. , 2009, , .		1
54	Low-Temperature FTIR Spectroscopic and Theoretical Study on an Energetic Nitroimine: Dinitroammeline (DNAM). Journal of Physical Chemistry A, 2008, 112, 3432-3443.	2.5	9

ANTONIO A PORTUGAL

#	Article	IF	CITATIONS
55	Simulation of Fe2O3/Al combustion: Sensitivity analysis. Chemical Engineering Science, 2007, 62, 5078-5083.	3.8	9
56	Fe2O3/aluminum thermite reaction intermediate and final products characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 465, 199-210.	5.6	110
57	Crystal and Molecular Structure of 4,6-Bis(nitroimino)-1,3,5-triazinan-2-one:Â Theoretical and X-ray Studies. Journal of Physical Chemistry A, 2007, 111, 150-158.	2.5	15
58	Modelling and simulation of Fe2O3/Aluminum thermite combustion: Experimental validation. Computer Aided Chemical Engineering, 2006, , 365-370.	0.5	15
59	Radial Combustion Propagation in Iron(III) Oxide/Aluminum Thermite Mixtures. Propellants, Explosives, Pyrotechnics, 2006, 31, 42-49.	1.6	31
60	Cyanuric acid–epichlorohydrin prepolymers. Journal of Applied Polymer Science, 2006, 99, 3684-3691.	2.6	0
61	A performance comparison of some high breakdown robust estimators for nonlinear parameter estimation. Computer Aided Chemical Engineering, 2006, , 279-284.	0.5	Ο
62	Thermal Behavior of Fe2O3/Al Thermite Mixtures in Air and Vacuum Environments. AIP Conference Proceedings, 2006, , .	0.4	0
63	Melamine/epichlorohydrin prepolymers: syntheses and characterization. Polymer, 2005, 46, 1766-1774.	3.8	18
64	Phase investigation of as-prepared iron oxide/hydroxide produced by sol–gel synthesis. Materials Letters, 2005, 59, 859-863.	2.6	50
65	Cyanuric Acid/Epichlorohydrin Energetic Prepolymers. Propellants, Explosives, Pyrotechnics, 2005, 30, 338-343.	1.6	2
66	Coarse Explosive Particles of PBX as a Dominant Factor of Detonation Instability. AIP Conference Proceedings, 2004, , .	0.4	1
67	Iron Oxide/Aluminum Fast Thermite Reaction. AIP Conference Proceedings, 2004, , .	0.4	Ο
68	Detonation Meso-Scale Tests for Energetic Materials. AIP Conference Proceedings, 2002, , .	0.4	4
69	New Propellant Component, Part I. Study of 4,6-Dinitroamino-1,3,5-Triazine-2(1 H)-One (DNAM). Propellants, Explosives, Pyrotechnics, 2001, 26, 273.	1.6	15
70	New Propellant Component, Part II. Study of a PSAN/DNAM/HTPB Based Formulation. Propellants, Explosives, Pyrotechnics, 2001, 26, 278.	1.6	19
71	Title is missing!. Cellulose, 2001, 8, 217-224.	4.9	42
72	Thermal decomposition of solid mixtures of 2-oxy-4,6-dinitramine-s-triazine (DNAM) and phase stabilized ammonium nitrate (PSAN). Thermochimica Acta, 2000, 364, 71-85.	2.7	15

#	Article	IF	CITATIONS
73	Reaction path of energetic materials using THOR code. , 1998, , .		0
74	Modeling Dissolution of Sparingly Soluble Multisized Powders. Journal of Pharmaceutical Sciences, 1997, 86, 726-732.	3.3	38
75	Moving finite elements method applied to the solution of front reaction models: causticizing reaction. Computers and Chemical Engineering, 1995, 19, 421-426.	3.8	5
76	Determination of the steady state of isothermal two-phase continuous stirred tank reactors. Chemical Engineering Science, 1994, 49, 3447-3456.	3.8	2
77	Synergetic phenomena in detonation of solid heterogeneous explosives. Control of oscillations and dissipative structures in detonation flow. , 0, , .		0
78	Tailored Silica Based Xerogels and Aerogels for Insulation in Space Environments. Advances in Science and Technology, 0, , .	0.2	15