
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5994115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing of porous ceramics by â€~starch consolidation'. Journal of the European Ceramic Society, 1998, 18, 131-140.	2.8	445
2	An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dental Materials, 2008, 24, 1343-1351.	1.6	231
3	Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomaterialia, 2007, 3, 255-262.	4.1	207
4	Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering. Materials, 2018, 11, 2530.	1.3	196
5	Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceramics International, 2009, 35, 229-235.	2.3	188
6	Scaffolds for bone restoration from cuttlefish. Bone, 2005, 37, 850-857.	1.4	186
7	Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials, 2018, 11, 2081.	1.3	179
8	Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology, 2004, 139, 69-75.	2.1	173
9	Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Journal of Non-Crystalline Solids, 2006, 352, 322-328.	1.5	166
10	Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions. Journal of the American Ceramic Society, 2000, 83, 1361-1368.	1.9	161
11	Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials, 2006, 27, 1832-1840.	5.7	155
12	Corrosion aspects of metallic implants — An overview. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 855-869.	0.8	154
13	Physicochemical Mechanism for the Continuous Reaction of ?-Al2O3-Modified Aluminum Powder with Water. Journal of the American Ceramic Society, 2007, 90, 1521-1526.	1.9	147
14	Thermal conductivity of highly porous mullite material. Acta Materialia, 2005, 53, 3313-3318.	3.8	145
15	Combustion synthesis of ternary carbide Ti3AlC2 in Ti–Al–C system. Journal of the European Ceramic Society, 2003, 23, 567-574.	2.8	143
16	Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceramics International, 2014, 40, 523-529.	2.3	143
17	Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. Journal of the European Ceramic Society, 2014, 34, 107-118.	2.8	136
18	Wood-cement composites: a review. European Journal of Wood and Wood Products, 2004, 62, 370-377.	1.3	135

#	Article	IF	CITATIONS
19	Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/β-tricalcium phosphate ratios. Journal of Solid State Chemistry, 2005, 178, 3190-3196.	1.4	133
20	Hydrogenâ€Generation Materials for Portable Applications. Journal of the American Ceramic Society, 2008, 91, 3825-3834.	1.9	132
21	Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. Journal of the European Ceramic Society, 2009, 29, 23-30.	2.8	130
22	Ionic Substitutions in Biphasic Hydroxyapatite and βâ€īricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement. Journal of the American Ceramic Society, 2008, 91, 1-12.	1.9	129
23	Synthesis and structural characterization of strontium- and magnesium-co-substituted β-tricalcium phosphate. Acta Biomaterialia, 2010, 6, 571-576.	4.1	123
24	Incorporation of granite cutting sludge in industrial porcelain tile formulations. Journal of the European Ceramic Society, 2004, 24, 3177-3185.	2.8	121
25	Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Materials Science and Engineering C, 2001, 15, 183-185.	3.8	117
26	Hydroxyapatite nano-powders produced hydrothermally from nacreous material. Journal of the European Ceramic Society, 2006, 26, 3639-3646.	2.8	117
27	Synthesis of glass–ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. Journal of the European Ceramic Society, 2006, 26, 1463-1471.	2.8	116
28	Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass. Journal of Non-Crystalline Solids, 2007, 353, 2383-2391.	1.5	114
29	Modification of Surface Charge Properties during Kaolinite to Halloysite-7Ã Transformation. Journal of Colloid and Interface Science, 1999, 210, 360-366.	5.0	108
30	Er doped ZnO nanoplates: Synthesis, optical and dielectric properties. Ceramics International, 2014, 40, 1635-1639.	2.3	108
31	Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dental Materials, 2008, 24, 1374-1380.	1.6	105
32	Composite and Nanocomposite Metal Foams. Materials, 2016, 9, 79.	1.3	102
33	Processing of porous cordierite bodies by starch consolidation. Materials Research Bulletin, 1998, 33, 1439-1448.	2.7	98
34	Sol gel derived SiO2-CaO-MgO-P2O5 bioglass system—Preparation andin vitro characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 546-553.	1.6	98
35	Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomaterialia, 2011, 7, 4071-4080.	4.1	98
36	Synthesis and Mechanical Performance of Biological-like Hydroxyapatites. Chemistry of Materials, 2006, 18, 2181-2186.	3.2	97

#	Article	IF	CITATIONS
37	Manufacturing and bending behaviour of in situ foam-filled aluminium alloy tubes. Materials & Design, 2015, 66, 532-544.	5.1	97
38	Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation. Acta Biomaterialia, 2012, 8, 361-372.	4.1	96
39	Synthesis and Thermal Stability of Hydroxyapatiteâ~'î²-Tricalcium Phosphate Composites with Cosubstituted Sodium, Magnesium, and Fluorine. Chemistry of Materials, 2006, 18, 198-203.	3.2	95
40	Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium Hydroxides on Particle Characteristics. Journal of the American Ceramic Society, 2001, 84, 1696-1702.	1.9	94
41	Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydrate Polymers, 2015, 121, 37-48.	5.1	94
42	Nucleation and crystal growth in commercial LAS compositions. Journal of the European Ceramic Society, 2001, 21, 1187-1194.	2.8	93
43	A simple recipe for direct writing complex 45S5 Bioglass® 3D scaffolds. Materials Letters, 2013, 93, 68-71.	1.3	93
44	Porous bioactive calcium carbonate implants processed by starch consolidation. Materials Science and Engineering C, 2000, 11, 35-40.	3.8	92
45	Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceramics International, 2014, 40, 10593-10600.	2.3	92
46	Influence of the stabilising mechanism and solid loading on slip casting of alumina. Journal of the European Ceramic Society, 1998, 18, 479-486.	2.8	91
47	Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures. PLoS ONE, 2015, 10, e0122989.	1.1	91
48	Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomaterialia, 2007, 3, 243-249.	4.1	90
49	Aluminosilicate-based sealants for SOFCs and other electrochemical applicationsÂâ^' A brief review. Journal of Power Sources, 2013, 242, 486-502.	4.0	90
50	Structural and dielectric properties of Al-doped ZnO nanostructures. Ceramics International, 2014, 40, 6031-6036.	2.3	88
51	Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials, 2001, 22, 583-588.	5.7	87
52	Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomaterialia, 2011, 7, 1835-1843.	4.1	87
53	The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared. Chemistry Central Journal, 2015, 9, 28.	2.6	87
54	On the Titania Phase Transition by Zirconia Additive in a Sol-Gel-Derived Powder. Materials Research Bulletin, 1998, 33, 389-394.	2.7	86

#	Article	IF	CITATIONS
55	Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. Journal of Biomedical Materials Research Part B, 2002, 60, 159-166.	3.0	86
56	Fabrication of Highly Porous Mullite Materials. Journal of the American Ceramic Society, 2005, 88, 777-779.	1.9	83
57	Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/l²-tricalciumphosphate mixtures. Ceramics International, 2007, 33, 1489-1494.	2.3	82
58	Influence of particle size distribution on colloidal processing of alumina. Journal of the European Ceramic Society, 1998, 18, 249-253.	2.8	80
59	The effect of Cr2O3 addition on crystallization and properties of La2O3-containing diopside glass-ceramics. Acta Materialia, 2008, 56, 3065-3076.	3.8	80
60	Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). Journal of Sol-Gel Science and Technology, 2006, 37, 111-115.	1.1	79
61	Newly developed Sr-substituted α-TCP bone cements. Acta Biomaterialia, 2010, 6, 928-935.	4.1	79
62	Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Journal of Materials Chemistry, 2005, 15, 5007.	6.7	78
63	Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. , 2010, 20, 162-177.		78
64	Preparation and characterization of high compressive strength foams from sheet glass. Journal of Porous Materials, 2006, 13, 133-139.	1.3	76
65	Stable glass-ceramic sealants for solid oxide fuel cells: Influence of Bi2O3 doping. International Journal of Hydrogen Energy, 2010, 35, 6911-6923.	3.8	76
66	Bioresorbable Plates and Screws for Clinical Applications: A Review. Journal of Healthcare Engineering, 2012, 3, 243-260.	1.1	76
67	Controlling hydrolysis and dispersion of AlN powders in aqueous media. Journal of Colloid and Interface Science, 2003, 261, 456-463.	5.0	75
68	Effect of Al2O3 and K2O content on structure, properties and devitrification of glasses in the Li2O–SiO2 system. Journal of the European Ceramic Society, 2010, 30, 2017-2030.	2.8	75
69	Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. Journal of Inorganic Biochemistry, 2014, 136, 57-66.	1.5	75
70	Preparation of size-controlled nanoparticles of magnetite. Journal of Magnetism and Magnetic Materials, 2012, 324, 1753-1757.	1.0	74
71	Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation. Materials Letters, 1998, 36, 320-324.	1.3	73
72	Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 2017, 37, 359-368.	2.8	72

#	Article	IF	CITATIONS
73	Formation of Strontium-Stabilized ?-Tricalcium Phosphate from Calcium-Deficient Apatite. Journal of the American Ceramic Society, 2006, 89, 3277-3280.	1.9	71
74	Synthesis and mechanical behaviour of chlorapatite and chlorapatite/β-TCP composites. Journal of the European Ceramic Society, 2007, 27, 2287-2294.	2.8	70
75	Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceramics International, 2008, 34, 7-13.	2.3	70
76	The use of egg shells to produce Cathode Ray Tube (CRT) glass foams. Ceramics International, 2013, 39, 9071-9078.	2.3	70
77	Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. Journal of Biomedical Materials Research Part B, 2002, 60, 232-240.	3.0	69
78	Layered growth of Ti2AlC and Ti3AlC2 in combustion synthesis. Materials Letters, 2007, 61, 779-784.	1.3	69
79	Development of ceramic floor tile compositions based on quartzite and granite sludges. Journal of the European Ceramic Society, 2007, 27, 4649-4655.	2.8	68
80	Structural and Femtosecond Third-Order Nonlinear Optical Properties of Sodium Borate Oxide Glasses: Effect of Antimony. Journal of Physical Chemistry C, 2019, 123, 5591-5602.	1.5	68
81	Colloidal processing of hydroxyapatite. Biomaterials, 2001, 22, 1847-1852.	5.7	67
82	Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Journal of Biomedical Materials Research - Part A, 2006, 77A, 160-168.	2.1	67
83	Synergy of polysaccharide mixtures in gelcasting of alumina. Journal of the European Ceramic Society, 2000, 20, 423-429.	2.8	66
84	Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts. Journal of the European Ceramic Society, 2006, 26, 2503-2510.	2.8	66
85	Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. International Journal of Nanomedicine, 2017, Volume 12, 683-707.	3.3	66
86	Processing of aqueous tape-casting of alumina with acrylic emulsion binders. Journal of the European Ceramic Society, 1998, 18, 311-321.	2.8	65
87	Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study. Ceramics International, 2007, 33, 637-641.	2.3	65
88	The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behaviour of lithium disilicate-based glass. Journal of Materials Science, 2013, 48, 765-773.	1.7	65
89	Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. RSC Advances, 2014, 4, 20902-20908.	1.7	65
90	Microstructure and thermal conductivity of porous ZrO2 ceramics. Acta Materialia, 2007, 55, 3663-3669.	3.8	64

#	Article	IF	CITATIONS
91	Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomaterialia, 2014, 10, 3264-3278.	4.1	64
92	Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite. Ceramics International, 2014, 40, 13371-13379.	2.3	64
93	Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems. Materials Research Bulletin, 2004, 39, 83-91.	2.7	62
94	Optimization of La2O3-containing diopside based glass-ceramic sealants for fuel cell applications. Journal of Power Sources, 2009, 189, 1032-1043.	4.0	62
95	Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. Journal of Materials Science: Materials in Medicine, 2010, 21, 2955-2969.	1.7	62
96	Synthesis and Structure Refinement of Zincâ€Doped βâ€Tricalcium Phosphate Powders. Journal of the American Ceramic Society, 2009, 92, 1592-1595.	1.9	61
97	Electrochemical and structural evaluation of functionally graded bioglass-apatite composites electrophoretically deposited onto Ti6Al4V alloy. Electrochimica Acta, 2009, 54, 1192-1198.	2.6	61
98	Influence of the annealing temperatures on the photoluminescence of KCaBO3:Eu3+ phosphor. RSC Advances, 2012, 2, 8768.	1.7	61
99	Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine. Ceramics International, 2017, 43, 15719-15728.	2.3	61
100	Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5, 1233-1240.	4.1	60
101	Structural analysis and thermal behavior of diopside–fluorapatite–wollastonite-based glasses and glass–ceramics. Acta Biomaterialia, 2010, 6, 4380-4388.	4.1	59
102	Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α ↔ β-tricalcium phosphate phase transformations. Journal of the European Ceramic Society, 2016, 36, 817-827.	2.8	59
103	Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Materials Science and Engineering C, 2017, 70, 796-804.	3.8	59
104	Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel. Ceramics International, 2010, 36, 473-482.	2.3	58
105	Aqueous Colloidal Processing of ZTA Composites. Journal of the American Ceramic Society, 2009, 92, 9-16.	1.9	57
106	A facile electrodeposition of hydroxyapatite onto borate passivated surgical grade stainless steel. Corrosion Science, 2011, 53, 2328-2334.	3.0	56
107	A novel approach to prepare aluminium-alloy foams reinforced by carbon-nanotubes. Materials Letters, 2015, 160, 162-166.	1.3	56
108	Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. Materials, 2018, 11, 1702.	1.3	55

#	Article	IF	CITATIONS
109	Effect of sodium hexametaphosphate and ageing on the rheological behaviour of kaolin dispersions. Applied Clay Science, 2006, 31, 56-64.	2.6	54
110	Synthesis of hydroxy-chlorapatites solid solutions. Materials Letters, 2006, 60, 864-868.	1.3	54
111	Structural role of zinc in biodegradation of alkali-free bioactive glasses. Journal of Materials Chemistry B, 2013, 1, 3073.	2.9	54
112	Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites. Journal of Inorganic Biochemistry, 2006, 100, 1692-1697.	1.5	53
113	Production and characterisation of glass ceramic foams from recycled raw materials. Advances in Applied Ceramics, 2009, 108, 9-13.	0.6	53
114	KCa4(BO3)3:Ln3+ (Ln = Dy, Eu, Tb) phosphors for near UV excited white–light–emitting diodes. AlP Advances, 2013, 3, .	0.6	53
115	An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon, 2015, 95, 589-600.	5.4	53
116	Synthesis of hydroxyapatite/fluoroapatite solid solution by a sol–gel method. Materials Letters, 2001, 51, 37-41.	1.3	52
117	Porous glass reinforced hydroxyapatite materials produced with different organic additives. Journal of Non-Crystalline Solids, 2002, 304, 286-292.	1.5	52
118	Effect of Ca/P ratio of precursors on the formation of different calcium apatitic ceramics—An X-ray diffraction study. Scripta Materialia, 2005, 53, 1259-1262.	2.6	52
119	Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites. Journal of Materials Chemistry, 2006, 16, 286-291.	6.7	52
120	Brushite-Forming Mg-, Zn- and Sr-Substituted Bone Cements for Clinical Applications. Materials, 2010, 3, 519-535.	1.3	52
121	Sol–gel derived fluoridated hydroxyapatite films. Materials Research Bulletin, 2003, 38, 89-97.	2.7	51
122	Effect of Solids Loading on Slipâ€Casting Performance of Silicon Carbide Slurries. Journal of the American Ceramic Society, 1999, 82, 1993-2000.	1.9	51
123	Synthesis and properties of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O. Ceramics International, 2009, 35, 3013-3019.	2.3	51
124	A study on the aqueous dispersion mechanism of CuO powders using Tiron. Journal of Colloid and Interface Science, 2009, 330, 119-124.	5.0	51
125	Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: An in vitro investigation. Materials Science and Engineering C, 2013, 33, 4160-4166.	3.8	51
126	3D printing vertically: Direct ink writing free-standing pillar arrays. Materials Today, 2020, 35, 16-24.	8.3	50

#	Article	IF	CITATIONS
127	Mechanical and lamination properties of alumina green tapes obtained by aqueous tape-casting. Journal of the European Ceramic Society, 1999, 19, 2867-2873.	2.8	48
128	3D chitosan–gelatin–chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells. Biomedical Materials (Bristol), 2007, 2, 124-131.	1.7	48
129	Study of calcium–magnesium–aluminum–silicate (CMAS) glass and glass-ceramic sealant for solid oxide fuel cells. Journal of Power Sources, 2013, 231, 203-212.	4.0	47
130	Permeability of diatomite layers processed by different colloidal techniques. Journal of the European Ceramic Society, 2000, 20, 201-207.	2.8	46
131	Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOyÂ=ÂSiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation. Journal of Materials Science, 2009, 44, 2743-2751.	1.7	45
132	MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. Journal of the European Ceramic Society, 2001, 21, 2353-2360.	2.8	44
133	In Situ Formation and Characterization of Flourine-Substituted Biphasic Calcium Phosphate Ceramics of Varied F-HAP/Î ² -TCP Ratios. Chemistry of Materials, 2005, 17, 3065-3068.	3.2	44
134	Crystallization behaviour of Li2OZnOSiO2 glass–ceramics system. Ceramics International, 2007, 33, 863-867.	2.3	44
135	Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceramics International, 2009, 35, 2007-2015.	2.3	44
136	Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. Journal of Materials Science: Materials in Medicine, 2011, 22, 217-227.	1.7	44
137	Electrical properties of Ag-doped ZnO nano-plates synthesized via wet chemical precipitation method. Ceramics International, 2014, 40, 4471-4477.	2.3	44
138	<i>In Situ</i> Impregnation of Silver Nanoclusters in Microporous Chitosan-PEG Membranes as an Antibacterial and Drug Delivery Percutaneous Device. Langmuir, 2016, 32, 10305-10316.	1.6	44
139	Diopside–Ba disilicate glass–ceramic sealants for SOFCs: Enhanced adhesion and thermal stability by Sr for Ca substitution. International Journal of Hydrogen Energy, 2013, 38, 3073-3086.	3.8	43
140	Effect of dispersant on the rheological properties and slip casting of concentrated sialon precursor suspensions. Journal of the European Ceramic Society, 2003, 23, 1525-1530.	2.8	42
141	Sol-gel preparation andin vitro test of fluorapatite/hydroxyapatite films. Journal of Biomedical Materials Research Part B, 2004, 69B, 33-37.	3.0	42
142	Fast Shape Evolution of TiN Microcrystals in Combustion Synthesis. Crystal Growth and Design, 2006, 6, 2404-2411.	1.4	42
143	Surface Passivation of MgAl ₂ O ₄ Spinel Powder by Chemisorbing H ₃ PO ₄ for Easy Aqueous Processing. Langmuir, 2008, 24, 9525-9530.	1.6	42
144	Strong bonding between sputtered bioglass–ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments. Applied Surface Science, 2013, 280, 530-538.	3.1	42

#	Article	IF	CITATIONS
145	Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method. Solid State Communications, 2014, 195, 74-79.	0.9	42
146	Structure and Crystallization of Alkaline-Earth Aluminosilicate Glasses: Prevention of the Alumina-Avoidance Principle. Journal of Physical Chemistry B, 2018, 122, 4737-4747.	1.2	42
147	Influence of magnesia on colloidal processing of alumina. Journal of the European Ceramic Society, 1997, 17, 1341-1350.	2.8	41
148	Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy. Materials Science and Engineering C, 2009, 29, 1252-1257.	3.8	41
149	Diopside (CaO·MgO·2SiO2)–fluorapatite (9CaO·3P2O5·CaF2) glass-ceramics: potential materials for bone tissue engineering. Journal of Materials Chemistry, 2011, 21, 16247.	6.7	41
150	Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses. Journal of Materials Chemistry, 2011, 21, 8074.	6.7	41
151	Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells. Journal of Materials Chemistry, 2012, 22, 10042.	6.7	41
152	A Thermo-Chemical Surface Treatment of AlN Powder for the Aqueous Processing of AlN Ceramics. Journal of Materials Research, 2004, 19, 746-751.	1.2	40
153	Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature. Journal of Materials Science: Materials in Medicine, 2011, 22, 2693-2710.	1.7	40
154	Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceramics International, 2013, 39, 2519-2526.	2.3	40
155	Role of the clogging effect in the slip casting process. Journal of the European Ceramic Society, 1998, 18, 1161-1169.	2.8	39
156	In situ preparation of weakly flocculated aqueous anatase suspensions by a hydrothermal technique. Journal of Colloid and Interface Science, 2003, 260, 82-88.	5.0	39
157	Hydrolysis-induced aqueous gelcasting for near-net shape forming of ZTA ceramic composites. Journal of the European Ceramic Society, 2009, 29, 1393-1401.	2.8	39
158	Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization. Journal of Colloid and Interface Science, 2005, 283, 102-106.	5.0	38
159	Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements. Journal of Materials Science: Materials in Medicine, 2010, 21, 431-438.	1.7	38
160	The role of K2O on sintering and crystallization of glass powder compacts in the Li2O–K2O–Al2O3–SiO2 system. Journal of the European Ceramic Society, 2012, 32, 2283-2292.	2.8	38
161	Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics. Ceramics International, 2016, 42, 16897-16905.	2.3	38
162	Combustion synthesis of AlN–SiC solid solution particles. Journal of the European Ceramic Society, 2000, 20, 2601-2606.	2.8	37

#	Article	IF	CITATIONS
163	Effect of K2O on structure–property relationships and phase transformations in Li2O–SiO2 glasses. Journal of the European Ceramic Society, 2012, 32, 291-298.	2.8	37
164	The roles of P2O5 and SiO2/Li2O ratio on the network structure and crystallization kinetics of non-stoichiometric lithium disilicate based glasses. Journal of Non-Crystalline Solids, 2018, 481, 512-521.	1.5	37
165	Effect of Dispersant Concentration on Slip Casting of Cordierite-Based Glass Ceramics. Journal of Colloid and Interface Science, 2001, 241, 417-421.	5.0	36
166	Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. Journal of Thermal Analysis and Calorimetry, 2009, 98, 347-354.	2.0	36
167	<i>In vitro</i> performance assessment of new brushiteâ€forming Zn―and ZnSrâ€substituted βâ€TCP bone cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 414-420.	1.6	36
168	Structure, Sintering, and Crystallization Kinetics of Alkalineâ€Earth Aluminosilicate Glass–Ceramic Sealants for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2010, 93, 830-837.	1.9	36
169	Development and performance of diopside based glass-ceramic sealants for solid oxide fuel cells. Journal of Non-Crystalline Solids, 2010, 356, 1070-1080.	1.5	36
170	Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 313-327.	1.5	36
171	Influence of Temperature on Stability of Electrostatically Stabilized Alumina Suspensions. Journal of Colloid and Interface Science, 2000, 231, 221-227.	5.0	35
172	Hydrothermal processing of nanocrystalline anatase films from tetraethylammonium hydroxide peptized titania sols. Journal of the European Ceramic Society, 2004, 24, 335-339.	2.8	35
173	A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass-ceramics. Biomateria 2005, 26, 2255-2264.	als., 5.7	35
174	Formation and Densification Behavior of MgAl ₂ O ₄ Spinel: The Influence of Processing Parameters. Journal of the American Ceramic Society, 2008, 91, 1905-1911.	1.9	35
175	Gelcasting of Magnesium Aluminate Spinel Powder. Journal of the American Ceramic Society, 2009, 92, 350-357.	1.9	35
176	Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure. Applied Surface Science, 2010, 256, 7102-7110.	3.1	35
177	Structural and thermal characterization of CaO–MgO–SiO2–P2O5–CaF2 glasses. Journal of the European Ceramic Society, 2012, 32, 2739-2746.	2.8	35
178	Fabricating and characterising ZnO–ZnS–Ag ₂ S ternary nanostructures with efficient solar-light photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 22418-22425.	1.3	35
179	Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Materials Science and Engineering C, 2019, 94, 426-436.	3.8	35
180	Amorphous Sn/Si Mixed Oxides, Mild Solid Lewis Acid Catalysts for Esterification and Etherification Reactions. Journal of Catalysis, 1997, 172, 414-426.	3.1	34

#	Article	IF	CITATIONS
181	Influence of particle size and particle size distribution on drying-shrinkage behaviour of alumina slip cast bodies. Ceramics International, 1999, 25, 577-580.	2.3	34
182	Microstructure and formation mechanism of combustion-synthesized rodlike Ca α-sialon crystals. Journal of Materials Research, 2001, 16, 1928-1934.	1.2	34
183	Production of Al-rich sludge-containing ceramic bodies by different shaping techniques. Journal of Materials Processing Technology, 2004, 148, 139-146.	3.1	34
184	Bone ingrowth in macroporous Bonelike® for orthopaedic applications. Acta Biomaterialia, 2008, 4, 370-377.	4.1	34
185	Crystallization Process and Some Properties of Li ₂ O–SiO ₂ Glass–Ceramics Doped with Al ₂ O ₃ and K ₂ O. Journal of the American Ceramic Society, 2008, 91, 3698-3703.	1.9	34
186	Effect of Tetramethylammonium Hydroxide on Nucleation, Surface Modification and Growth of Magnetic Nanoparticles. Journal of Nanomaterials, 2012, 2012, 1-10.	1.5	34
187	Innovative fabrication of PZT pillar arrays by a colloidal approach. Journal of the European Ceramic Society, 2012, 32, 1067-1075.	2.8	34
188	Understanding the composition–structure–bioactivity relationships in diopside (CaO·MgO·2SiO2)–tricalcium phosphate (3CaO·P2O5) glass system. Acta Biomaterialia, 2015, 15, 210-226	.4.1	34
189	Optical and magnetic properties of ZnO/ZnFe 2 O 4 nanocomposite. Materials Chemistry and Physics, 2017, 192, 330-338.	2.0	34
190	Effect of slurry structure on the slip casting of silicon carbide powders. Journal of the European Ceramic Society, 1992, 10, 59-64.	2.8	33
191	Influence of solid loading on drying-Shrinkage behaviour of slip cast bodies. Journal of the European Ceramic Society, 1998, 18, 487-493.	2.8	33
192	Mechanical and acoustical characteristics of bound rubber granulate. Journal of Materials Processing Technology, 2003, 142, 427-433.	3.1	33
193	Crystallization behaviour, structure and properties of sintered glasses in the diopside–Ca-Tschermak system. Journal of the European Ceramic Society, 2007, 27, 3231-3238.	2.8	33
194	A novel colloidal processing route to alumina ceramics. Ceramics International, 2010, 36, 1357-1364.	2.3	33
195	Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses. Materials Science and Engineering C, 2014, 44, 159-165.	3.8	33
196	Surfactant-Assisted Hydrothermal Synthesis of Hydroxyapatite Nanopowders. Journal of Nanoscience and Nanotechnology, 2012, 12, 8042-8049.	0.9	32
197	Modeling the mechanical properties of optimally processed cordierite–mullite–alumina ceramic foams by X-ray computed tomography and finite element analysis. Acta Materialia, 2012, 60, 4235-4246.	3.8	32
198	Co-precipitation of a Ni–Zn ferrite precursor powder: Effects of heat treatment conditions and deagglomeration on the structure and magnetic properties. Journal of the European Ceramic Society, 2012, 32, 2469-2476.	2.8	32

#	Article	IF	CITATIONS
199	Injectability of calcium phosphate pastes: Effects of particle size and state of aggregation of \hat{l}^2 -tricalcium phosphate powders. Acta Biomaterialia, 2015, 21, 204-216.	4.1	32
200	Preparation and crystallization of glasses in the system tetrasilicic mica-fluorapatite-diopside. Journal of the European Ceramic Society, 2004, 24, 3521-3528.	2.8	31
201	Microwave-assisted Synthesis and Structural Characterization of Nanosized Ce0.5Zr0.5O2 for CO Oxidation. Catalysis Letters, 2009, 130, 227-234.	1.4	31
202	Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 1834-1846.	5.2	31
203	Chitosan and polyethylene glycol based membranes with antibacterial properties for tissue regeneration. Materials Science and Engineering C, 2019, 96, 606-615.	3.8	31
204	Pressureless sinterability of slip cast silicon nitride bodies prepared from coprecipitation-coated powders. Journal of the European Ceramic Society, 1999, 19, 433-439.	2.8	30
205	Title is missing!. Journal of Materials Synthesis and Processing, 2002, 10, 311-318.	0.3	30
206	Crystallization kinetics of BaO–ZnO–Al2O3–B2O3–SiO2 glass. Physica B: Condensed Matter, 2008, 403, 1738-1746.	1.3	30
207	Electrical behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic solid oxide fuel cell interconnects. Journal of Power Sources, 2010, 195, 522-526.	4.0	30
208	Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. Materials Science and Engineering C, 2016, 62, 692-701.	3.8	30
209	Colloidal processing of calcium carbonate. Ceramics International, 1998, 24, 527-532.	2.3	29
210	Al-rich sludge treatments towards recycling. Journal of the European Ceramic Society, 2002, 22, 2243-2249.	2.8	29
211	Effect of solvent composition on dispersing ability of reaction sialonÂsuspensions. Journal of Colloid and Interface Science, 2003, 259, 391-397.	5.0	29
212	Influence of NiO on the crystallization kinetics of near stoichiometric cordierite glasses nucleated with TiO ₂ . Journal of Physics Condensed Matter, 2007, 19, 386231.	0.7	29
213	Characterization and photocatalytic activity of TiO2–M x O y (M x O y Â=ÂSiO2, Al2O3, and ZrO2) mixed oxides synthesized by microwave-induced solution combustion technique. Journal of Materials Science, 2009, 44, 4874-4882.	1.7	29
214	Sol–gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite. Materials Science and Engineering C, 2009, 29, 1006-1009.	3.8	29
215	Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering. Journal of Materials Science: Materials in Medicine, 2010, 21, 1047-1055.	1.7	29
216	Study of melilite based glasses and glass-ceramics nucleated by Bi2O3 for functional applications. RSC Advances, 2012, 2, 10955.	1.7	29

#	Article	IF	CITATIONS
217	Unveiling the Effects of Rare-Earth Substitutions on the Structure, Mechanical, Optical, and Imaging Features of ZrO ₂ for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 1725-1743.	2.6	29
218	Direct ink writing of macroporous leadâ€free piezoelectric Ba _{0.85} Ca _{0.15} Zr _{0.1} Ti _{0.9} O ₃ . Journal of the American Ceramic Society, 2019, 102, 3191-3203.	1.9	29
219	Hydrothermal synthesis of well-dispersed TiO ₂ nano-crystals. Journal of Materials Research, 2002, 17, 2197-2200.	1.2	28
220	The effect of triethanolamine on the formation of sol–gel derived fluoroapatite/hydroxyapatite solid solution. Materials Chemistry and Physics, 2003, 78, 767-771.	2.0	28
221	Temperature-Induced Gelation of Concentrated Sialon Suspensions. Journal of the American Ceramic Society, 2005, 88, 593-598.	1.9	28
222	Processing of glass-ceramics in the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–(P2O5)–F system via s and crystallization of glass powder compacts. Ceramics International, 2006, 32, 195-200.	sintering	28
223	Influence of lithium oxide as auxiliary flux on the properties of triaxial porcelain bodies. Journal of the European Ceramic Society, 2006, 26, 1131-1139.	2.8	28
224	Synthesis and characterization of MgAl2O4–ZrO2 composites. Ceramics International, 2009, 35, 259-264.	2.3	28
225	Nanomechanical characterization of bioglass films synthesized by magnetron sputtering. Thin Solid Films, 2014, 553, 166-172.	0.8	28
226	Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses. RSC Advances, 2014, 4, 13581.	1.7	28
227	Robocasting of ceramic glass scaffolds: Sol–gel glass, new horizons. Journal of the European Ceramic Society, 2019, 39, 1625-1634.	2.8	28
228	Sintering and crystallization of akermanite-based glass–ceramics. Materials Letters, 2006, 60, 1488-1491.	1.3	27
229	Diopside–Ca-Tschermak clinopyroxene based glass–ceramics processed via sintering and crystallization of glass powder compacts. Journal of the European Ceramic Society, 2007, 27, 2325-2331.	2.8	27
230	Chemisorption of Phosphoric Acid and Surface Characterization of As Passivated AlN Powder Against Hydrolysis. Langmuir, 2008, 24, 5359-5365.	1.6	27
231	Cosubstitution of Zinc and Strontium in β-Tricalcium Phosphate: Synthesis and Characterization. Journal of the American Ceramic Society, 2011, 94, 230-235.	1.9	27
232	Diopside – Mg orthosilicate and diopside – Ba disilicate glass–ceramics for sealing applications in SOFC: Sintering and chemical interactions studies. International Journal of Hydrogen Energy, 2012, 37, 12528-12539.	3.8	27
233	Sintering and devitrification of glass-powder compacts in the akermanite–gehlenite system. Journal of Materials Science, 2013, 48, 4128-4136.	1.7	27
234	Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics. Materials Science and Engineering C, 2015, 53, 252-261.	3.8	27

#	Article	IF	CITATIONS
235	On the mechanical properties of PLC–bioactive glass scaffolds fabricated via BioExtrusion. Materials Science and Engineering C, 2015, 57, 288-293.	3.8	27
236	Antibacterial efficiency of alkali-free bio-glasses incorporating ZnO and/or SrO as therapeutic agents. Ceramics International, 2019, 45, 4368-4380.	2.3	27
237	Bond-coating in plasma-sprayed calcium-phosphate coatings. Journal of Materials Science: Materials in Medicine, 2006, 17, 1161-1171.	1.7	26
238	Nano-TiO2-Coated Unidirectional Porous Glass Structure Prepared by Freeze Drying and Solution Infiltration. Journal of the American Ceramic Society, 2007, 90, 1265-1268.	1.9	26
239	Alkali-free bioactive diopside–tricalcium phosphate glass-ceramics for scaffold fabrication: Sintering and crystallization behaviours. Journal of Non-Crystalline Solids, 2016, 432, 81-89.	1.5	26
240	Carbothermal synthesis of micro-scale spherical AlN granules with CaF2 additive. Journal of Alloys and Compounds, 2016, 663, 823-828.	2.8	26
241	Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts. Ceramics International, 2016, 42, 2706-2716.	2.3	26
242	Understanding the Formation of CaAl ₂ Si ₂ O ₈ in Melilite-Based Glass-Ceramics: Combined Diffraction and Spectroscopic Studies. ACS Omega, 2017, 2, 6233-6243.	1.6	26
243	Osteogenic capacity of alkaliâ€free bioactive glasses. <i>In vitro</i> studies. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2360-2365.	1.6	26
244	Effect of diluents and NH4F additive on the combustion synthesis of Yb α-SiAlON. Journal of the European Ceramic Society, 2005, 25, 3361-3366.	2.8	25
245	Properties of paper coated with kaolin: The influence of the rheological modifier. Applied Clay Science, 2005, 30, 165-173.	2.6	25
246	Aqueous tape casting processing of low dielectric constant cordierite-based glass-ceramics—selection of binder. Journal of the European Ceramic Society, 2006, 26, 67-71.	2.8	25
247	Structure of Rheniumâ€Containing Sodium Borosilicate Class. International Journal of Applied Glass Science, 2013, 4, 42-52.	1.0	25
248	Glass structure and crystallization of Al and B containing glasses belonging to the Li ₂ O–SiO ₂ system. RSC Advances, 2015, 5, 41066-41078.	1.7	25
249	The <i>in vivo</i> performance of an alkaliâ€free bioactive glass for bone grafting, <scp>F</scp> ast <scp>O</scp> s [®] <scp>BG</scp> , assessed with an ovine model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 30-38.	1.6	25
250	Influence of the Ca/P ratio and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations. Ceramics International, 2018, 44, 8249-8256.	2.3	25
251	Feedstock Formulations for Direct Consolidation of Porcelains with Polysaccharides. Journal of the American Ceramic Society, 2001, 84, 719-725.	1.9	24
252	Rheological characterisation of water-based AlN slurries for the tape casting process. Journal of Materials Processing Technology, 2005, 169, 206-213.	3.1	24

#	Article	IF	CITATIONS
253	A non-aqueous processing route for phosphate-protection of AlN powder against hydrolysis. Journal of the European Ceramic Society, 2008, 28, 2281-2288.	2.8	24
254	Study of far infrared optical properties and, photocatalytic activity of ZnO/ZnS hetero-nanocomposite structure. RSC Advances, 2014, 4, 35383.	1.7	24
255	Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems. International Journal of Pharmaceutics, 2015, 490, 200-208.	2.6	24
256	Development of bilayer glass-ceramic SOFC sealants via optimizing the chemical composition of glasses—a review. Journal of Solid State Electrochemistry, 2015, 19, 2899-2916.	1.2	24
257	Ba-doped ZnO nanostructure: X-ray line analysis and optical properties in visible and low frequency infrared. Ceramics International, 2016, 42, 12860-12867.	2.3	24
258	Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications. ACS Applied Materials & Interfaces, 2016, 8, 4357-4367.	4.0	24
259	The structural role of lanthanum oxide in silicate glasses. Journal of Non-Crystalline Solids, 2019, 505, 18-27.	1.5	24
260	Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3‒B2O3 glasses by controlling the borate structural units. Scripta Materialia, 2022, 211, 114530.	2.6	24
261	Porosity development of diatomite layers processed by tape casting. Ceramics International, 1998, 24, 447-454.	2.3	23
262	Densification ability of combustion-derived Al2O3 powders. Ceramics International, 2009, 35, 1173-1179.	2.3	23
263	The bioactivity mechanism of magnetron sputtered bioglass thin films. Applied Surface Science, 2012, 258, 9840-9848.	3.1	23
264	Exchange bias beyond the superparamagnetic blocking temperature of the antiferromagnet in a Ni-NiO nanoparticulate system. Journal of Applied Physics, 2014, 115, .	1.1	23
265	Structure–property relationships and densification-crystallization behaviours of simplified lithium disilicate glass compositions. Ceramics International, 2014, 40, 129-140.	2.3	23
266	Injectable MnSr-doped brushite bone cements with improved biological performance. Journal of Materials Chemistry B, 2017, 5, 2775-2787.	2.9	23
267	Dispersion and flow properties of charcoal oil slurries (ChOS) as potential renewable industrial liquid fuels. Journal of the Energy Institute, 2018, 91, 978-983.	2.7	23
268	The Beneficial Mechanical and Biological Outcomes of Thin Copper-Gallium Doped Silica-Rich Bio-Active Glass Implant-Type Coatings. Coatings, 2020, 10, 1119.	1.2	23
269	Cordierite-based glass-ceramics processed by slip casting. Journal of the European Ceramic Society, 2001, 21, 185-193.	2.8	22
270	Recycling of chromium-rich leather ashes in porcelain tiles production. Journal of the European Ceramic Society, 2007, 27, 4657-4663.	2.8	22

#	Article	IF	CITATIONS
271	Effect of BaO Addition on Crystallization, Microstructure, and Properties of Diopside?Ca-Tschermak Clinopyroxene-Based Glass?Ceramics. Journal of the American Ceramic Society, 2007, 90, 2236-2244.	1.9	22
272	Dense β-SiAlONs consolidated by a modified hydrolysis-assisted solidification route. Journal of the European Ceramic Society, 2008, 28, 879-885.	2.8	22
273	Bulk nucleated fine grained mono-mineral glass-ceramics from low-silica fly ash. Ceramics International, 2009, 35, 555-558.	2.3	22
274	Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 545-547.	2.0	22
275	An effective and facile synthesis of hydroxyapatite powders using oxalic acid–ethylene glycol mixture. Current Applied Physics, 2011, 11, 590-593.	1.1	22
276	Thermo-mechanical behaviour of alkali free bioactive glass-ceramics co-doped with strontium and zinc. Journal of Non-Crystalline Solids, 2013, 375, 74-82.	1.5	22
277	A hundred times faster: Novel, rapid solâ€gel synthesis of bioâ€glass nanopowders (Siâ€Naâ€Caâ€P system, Ca:P	=) Ţj ETQ	110.7843 22
278	Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings. Materials Science and Engineering C, 2019, 105, 110014.	3.8	22
279	Dispersion Properties of Silicon Nitride Powder Coated with Yttrium and Aluminium Precursors. Journal of Colloid and Interface Science, 1998, 206, 274-280.	5.0	21
280	Particle segregation phenomena occurring during the slip casting process. Ceramics International, 2002, 28, 377-386.	2.3	21
281	Wear behavior on advanced structural ceramics: α-sialon matrix reinforced with β-sialon fibers. Materials & Design, 2005, 26, 417-423.	5.1	21
282	Factors which affect the morphology of AlN particles made by self-propagating high-temperature synthesis (SHS). Journal of Crystal Growth, 2006, 296, 97-103.	0.7	21
283	Study of Crystallization Kinetics in Glasses along the Diopside-Ca-Tschermak Join. Journal of the American Ceramic Society, 2008, 91, 2690-2697.	1.9	21
284	Effect of BaO on the crystallization kinetics of glasses along the Diopside–Ca-Tschermak join. Journal of Non-Crystalline Solids, 2009, 355, 193-202.	1.5	21
285	Dispersion of Cu2O particles in aqueous suspensions containing 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt. Ceramics International, 2009, 35, 1939-1945.	2.3	21
286	Additive manufacturing of 3D porous alkali-free bioactive glass scaffolds for healthcare applications. Journal of Materials Science, 2017, 52, 12079-12088.	1.7	21
287	Inertización de lodos galvánicos para su incorporación a productos cerámicos. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 1999, 38, 127-131.	0.9	21
288	Microstructural evolution in sol–gel derived P2O5-doped cordierite powders. Journal of the European Ceramic Society, 2000, 20, 2191-2197.	2.8	20

#	Article	IF	CITATIONS
289	The influence of Y2O3-containing sintering additives on the oxidation of Si3N4-based ceramics and the interfacial interactions with liquid Al-alloys. Journal of the European Ceramic Society, 2005, 25, 19-28.	2.8	20
290	Hydroxyapatite coating on selectively passivated and sensitively polymer-protected surgical grade stainless steel. Journal of Applied Electrochemistry, 2013, 43, 331-345.	1.5	20
291	Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 powder surface treated against hydrolysis – a key for a successful aqueous processing. Journal of Materials Chemistry C, 2013, 1, 4846.	2.7	20
292	Dy3+-doped nano-glass ceramics comprising NaAlSiO4 and NaY9Si6O26 nanocrystals for white light generation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 218-224.	1.7	20
293	Hydrolysis Control of AlN Powders for the Aqueous Processing of Spherical AlN Granules. Journal of the American Ceramic Society, 2013, 96, 1383-1389.	1.9	20
294	Elucidating the formation of Al–NBO bonds, Al–O–Al linkages and clusters in alkaline-earth aluminosilicate glasses based on molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 23966-23977.	1.3	20
295	Influence of powder pre-treatments on dispersion ability of aqueous silicon nitride-based suspensions. Journal of the European Ceramic Society, 2001, 21, 2413-2421.	2.8	19
296	The influence of BaO additives on the reaction of Al2O3–SiO2 ceramics with molten Al and Al–Si alloys. Acta Materialia, 2002, 50, 1441-1451.	3.8	19
297	Rietveld structure and <i>in vitro</i> analysis on the influence of magnesium in biphasic (hydroxyapatite and βâ€ŧricalcium phosphate) mixtures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 404-411.	1.6	19
298	Aqueous slip casting and hydrolysis assisted solidification of MgAl ₂ O ₄ spinel ceramics. Advances in Applied Ceramics, 2011, 110, 63-69.	0.6	19
299	Application of gel-casting to the fabrication of 1–3 piezoelectric ceramic–polymer composites for high-frequency ultrasound devices. Journal of Micromechanics and Microengineering, 2012, 22, 125001.	1.5	19
300	Formation Mechanisms in β-Ca3(PO4)2–ZnO Composites: Structural Repercussions of Composition and Heat Treatments. Inorganic Chemistry, 2017, 56, 1289-1299.	1.9	19
301	Impact of transition metal ions on the structure and bioactivity of alkali-free bioactive glasses. Journal of Non-Crystalline Solids, 2019, 506, 98-108.	1.5	19
302	In Situ Formed α-Alumina Platelets in a Mullite–Alumina Composite. Journal of the European Ceramic Society, 1998, 18, 495-500.	2.8	18
303	Tribological behaviour of colloidally processed sialon ceramics sliding against steel under dry conditions. Tribology Letters, 2005, 18, 295-301.	1.2	18
304	Synthesis and characterization of MgSiO3-containing glass-ceramics. Ceramics International, 2007, 33, 1481-1487.	2.3	18
305	Low temperature production of glass ceramics in the anorthite–diopside system via sintering and crystallization of glass powder compacts. Ceramics International, 2008, 34, 1145-1152.	2.3	18
306	Structural characterisation and thermo-physical properties of glasses in the Li2O–SiO2–Al2O3–K2O system. Journal of Thermal Analysis and Calorimetry, 2011, 103, 827-834.	2.0	18

#	Article	IF	CITATIONS
307	2 <scp>D</scp> Quantitative Analysis of Metal Foaming Kinetics by Hotâ€ <scp>S</scp> tage Microscopy. Advanced Engineering Materials, 2014, 16, 33-39.	1.6	18
308	Successful aqueous processing of a lead free 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ –0.5(Ba _{0.7} Ca _{0.3})TiO piezoelectric material composition. RSC Advances, 2014, 4, 26993-27002.	<sub⊵.3 <td>lb>18</td></sub	lb>18
309	Fabrication of ceramic microneedles – The role of specific interactions between processing additives and the surface of oxide particles in Epoxy Gel Casting. Journal of the European Ceramic Society, 2016, 36, 4131-4140.	2.8	18
310	Structural and impedance spectroscopy characteristics of BaCO ₃ /BaSnO ₃ /SnO ₂ nanocomposite: observation of a non-monotonic relaxation behavior. RSC Advances, 2018, 8, 2100-2108.	1.7	18
311	Enhanced bioactivity of a rapidly-dried sol-gel derived quaternary bioglass. Materials Science and Engineering C, 2018, 91, 36-43.	3.8	18
312	Robocasting of Cu2+ & La3+ doped sol–gel glass scaffolds with greatly enhanced mechanical properties: Compressive strength up to 14†MPa. Acta Biomaterialia, 2019, 87, 265-272.	4.1	18
313	Dielectric and optical properties of Ni- and Fe-doped CeO2 Nanoparticles. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	18
314	Threeâ€dimensional printing of zirconia scaffolds for load bearing applications: Study of the optimal fabrication conditions. Journal of the American Ceramic Society, 2021, 104, 4368-4380.	1.9	18
315	Direct nitridation of molten Al(Mg,Si) alloy to AlN. Journal of Crystal Growth, 2005, 281, 639-645.	0.7	17
316	Influence of ZnO on the crystallization kinetics and properties of diopside-Ca-Tschermak based glasses and glass-ceramics. Journal of Applied Physics, 2008, 104, 043529.	1.1	17
317	Is the ubiquitous presence of barium carbonate responsible for the poor aqueous processing ability of barium titanate?. Journal of the European Ceramic Society, 2013, 33, 2509-2517.	2.8	17
318	Luminescence study of mixed valence Eu-doped nanocrystalline glass–ceramics. Optical Materials, 2013, 36, 198-206.	1.7	17
319	Fabrication of Barium Strontium Titanate (<scp><scp>Ba</scp></scp> /sub>0.6 <scp>Sr</scp> /sub>0.4 <scp>TiO3D Microcomponents from Aqueous Suspensions. Journal of the American Ceramic Society, 2014, 97, 725-732.</scp>	> < si 1.9	ub>3) 17
320	Phase transition mechanisms involved in the formation of structurally stable β -Ca 3 (PO 4) 2 -α-Al 2 O 3 composites. Journal of the European Ceramic Society, 2017, 37, 2953-2963.	2.8	17
321	Doping β-TCP as a Strategy for Enhancing the Regenerative Potential of Composite β-TCP—Alkali-Free Bioactive Glass Bone Grafts. Experimental Study in Rats. Materials, 2019, 12, 4.	1.3	17
322	Reactions at the Interface Between Al2O3–SiO2 Ceramics with Additives of Alkaline-earth Oxides and Liquid Al–Si Alloy. Journal of Materials Research, 2002, 17, 641-647.	1.2	16
323	Combustion synthesis of rod-like α-SiAlON seed crystals. Materials Letters, 2004, 58, 1956-1958.	1.3	16
324	AlN ceramics processed by aqueous slip casting. Journal of Materials Research, 2006, 21, 2460-2469.	1.2	16

#	Article	IF	CITATIONS
325	Influence of the de-waxing atmosphere on the properties of AlN ceramics processed from aqueous media. Journal of the European Ceramic Society, 2006, 26, 2475-2483.	2.8	16
326	Fabrication of one-dimensional rod-like α-SiAlON powders in large scales by combustion synthesis. Journal of Alloys and Compounds, 2008, 454, 476-482.	2.8	16
327	Effect of some rare-earth oxides on structure, devitrification and properties of diopside based glasses. Ceramics International, 2009, 35, 3221-3227.	2.3	16
328	Structural, mechanical and dielectric properties of Ba0.6Sr0.4TiO3—The benefits of a colloidal processing approach. Materials Research Bulletin, 2014, 50, 329-336.	2.7	16
329	Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity. Journal of Sol-Gel Science and Technology, 2017, 84, 274-282.	1.1	16
330	Direct Ink Writing Glass: A Preliminary Step for Optical Application. Materials, 2020, 13, 1636.	1.3	16
331	Coprecipitation and Processing of Mullite Precursor Phases. Journal of the American Ceramic Society, 1996, 79, 1756-1760.	1.9	15
332	Pressure slip casting of bimodal silicon carbide powder suspensions. Ceramics International, 1999, 25, 491-495.	2.3	15
333	α‣iAlON Ceramics Obtained by Slip Casting and Pressureless Sintering. Journal of the American Ceramic Society, 2003, 86, 366-368.	1.9	15
334	Hydrothermal Synthesis of Submicrometer αâ€Alumina from Seeded Tetraethylammonium Hydroxideâ€Peptized Aluminum Hydroxide. Journal of the American Ceramic Society, 2003, 86, 2055-2058.	1.9	15
335	Influence of deagglomeration and carboxymethyl cellulose binders on rheological behaviour of kaolin suspensions. Applied Clay Science, 2003, 23, 257-264.	2.6	15
336	Friction and wear behaviour ofβ-silicon nitride–steel couples under unlubricated conditions. Materials Science and Technology, 2006, 22, 247-252.	0.8	15
337	A non-destructive method to assess delamination of ceramic tiles. Journal of the European Ceramic Society, 2007, 27, 1631-1636.	2.8	15
338	Influence of Strontium Oxide on Structural Transformations in Diopside-Based Glass-Ceramics Assessed by Diverse Structural Tools. Journal of Physical Chemistry C, 2015, 119, 11482-11492.	1.5	15
339	The densification and morphology of cordierite-based glass-ceramics. Materials Letters, 2001, 47, 205-211.	1.3	14
340	Sol-gel derived P2O5-doped cordierite powders: characterization and phase transformation. Materials Research Bulletin, 2001, 36, 799-810.	2.7	14
341	Mechanical characterisation of porous glass reinforced hydroxyapatite ceramics: Bonelike®. Materials Research, 2003, 6, 321-325.	0.6	14
342	Synthesis of lithium aluminosilacate glass and glass-ceramics from spodumene material. Ceramics International, 2004, 30, 1023-1030.	2.3	14

#	Article	IF	CITATIONS
343	Highly crystalline AlN particles synthesized by SHS method. Materials Letters, 2005, 59, 2605-2609.	1.3	14
344	Preparation of Y-SiAlON rod-like crystals and whiskers by combustion synthesis. Materials Letters, 2005, 59, 3955-3958.	1.3	14
345	Characterization andin vivo evaluation of sol–gel derived hydroxyapatite coatings on Ti6Al4V substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 441-447.	1.6	14
346	Surface characterisation and modification of submicron and nanosized silicon carbide powders. Journal of the European Ceramic Society, 2007, 27, 3545-3550.	2.8	14
347	Effect of strontium-to-calcium ratio on the structure, crystallization behavior and functional properties of diopside-based glasses. International Journal of Hydrogen Energy, 2014, 39, 3552-3563.	3.8	14
348	Effect of Ni doping on structural and optical properties of Zn1â^'Ni O nanopowder synthesized via low cost sono-chemical method. Materials Research Bulletin, 2015, 70, 430-435.	2.7	14
349	Structure and Stability of High CaO- and P2O5-Containing Silicate and Borosilicate Bioactive Glasses. Journal of Physical Chemistry B, 2019, 123, 7558-7569.	1.2	14
350	Novel rod-like yttrium α-sialon crystalline powders prepared by combustion synthesis. Materials Chemistry and Physics, 2002, 75, 252-255.	2.0	13
351	Low-temperature preparation of in situ toughened Yb α-SiAlON ceramics by spark plasma sintering (SPS) with addition of combustion synthesized seed crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 402, 242-249.	2.6	13
352	Preparation and characterization of SiAlON matrix composites reinforced with combustion synthesis rod-like SiAlON particles. International Journal of Refractory Metals and Hard Materials, 2009, 27, 647-652.	1.7	13
353	Structure and crystallization behaviour of some MgSiO3-based glasses. Ceramics International, 2009, 35, 1529-1538.	2.3	13
354	Phosphoric acid treated AlN powder for aqueous processing of net-shape dense AlN and <i>β</i> -SiAlON parts. Advances in Applied Ceramics, 2009, 108, 111-117.	0.6	13
355	Melilite glass–ceramic sealants for solid oxide fuel cells: effects of ZrO2 additions assessed by microscopy, diffraction and solid-state NMR. Journal of Materials Chemistry A, 2013, 1, 6471.	5.2	13
356	Fostering the properties of Zr _{0.8} Sn _{0.2} TiO ₄ (ZST) ceramics via freeze granulation without sintering additives. RSC Advances, 2014, 4, 48734-48740.	1.7	13
357	Synthesis and in vitro bioactivity assessment of injectable bioglassâ^'organic pastes for bone tissue repair. Ceramics International, 2015, 41, 9373-9382.	2.3	13
358	Synthesis and bioactivity assessment of high silica content quaternary glasses with <scp>C</scp> a: <scp>P</scp> ratios of 1.5 and 1.67, made by a rapid solâ€gel process. Journal of Biomedical Materials Research - Part A, 2018, 106, 510-520.	2.1	13
359	Robocasting: Prediction of ink printability in solgel bioactive glass. Journal of the American Ceramic Society, 2019, 102, 1608-1618.	1.9	13
360	Microstructural effects on the electrical behaviour of SrTi0.95Nb0.05O3+1̂´ materials on changing from reducing to oxidising conditions. Sensors and Actuators B: Chemical, 2001, 75, 88-94.	4.0	12

#	Article	IF	CITATIONS
361	Comparison of dispersants performance in slip casting of cordierite-based glass-ceramics. Ceramics International, 2003, 29, 785-791.	2.3	12
362	Characterization and Mechanical Performance of the Mg-Stabilized beta-Ca3(PO4)2 Prepared from Mg-Substituted Ca-Deficient Apatite. Journal of the American Ceramic Society, 2006, 89, 060623005134017-???.	1.9	12
363	Formation of Î ² -SiAlON micropalings consisting of nanorods during combustion synthesis. Scripta Materialia, 2006, 55, 935-938.	2.6	12
364	The influence of incorporation of ZnO-containing glazes on the properties of hard porcelains. Journal of the European Ceramic Society, 2007, 27, 1665-1670.	2.8	12
365	Mechanical-activation-assisted combustion synthesis of α-SiAlON in air. Materials Research Bulletin, 2007, 42, 989-995.	2.7	12
366	The effect of Al2O3 on sintering and crystallization of MgSiO3-based glass-powder compacts. Ceramics International, 2008, 34, 505-510.	2.3	12
367	Comparative study of friction behaviour of alumina and zirconia ceramics against steel under water lubricated conditions. Industrial Lubrication and Tribology, 2008, 60, 178-182.	0.6	12
368	Bi-layer glass-ceramic sealant for solid oxide fuel cells. Journal of the European Ceramic Society, 2014, 34, 1449-1455.	2.8	12
369	Microfabrication of high aspect ratio BST pillar arrays by epoxy gel casting from aqueous suspensions with added water soluble epoxy resin. Materials Research Bulletin, 2014, 60, 830-837.	2.7	12
370	Influence of Al ₂ O ₃ and B ₂ O ₃ on Sintering and Crystallization of Lithium Silicate Glass System. Journal of the American Ceramic Society, 2016, 99, 833-840.	1.9	12
371	The effect of functional ions (Y3+, Fâ^', Ti4+) on the structure, sintering and crystallization of diopside-calcium pyrophosphate bioglasses. Journal of Non-Crystalline Solids, 2016, 443, 162-171.	1.5	12
372	Slip casting of reaction sialon bodies in organic media. Journal of Materials Science Letters, 2001, 20, 2043-2044.	0.5	11
373	Study on the anisotropic growth of rod-like Yb α-SiAlON crystals prepared by combustion synthesis. Journal of Materials Research, 2004, 19, 3408-3413.	1.2	11
374	Influence of chemical composition on sintering ability of ZTA ceramics consolidated from freeze dried granules. Ceramics International, 2011, 37, 835-841.	2.3	11
375	Amino acid-assisted synthesis of strontium hydroxyapatite bone cement by a soft solution freezing method. Bulletin of Materials Science, 2012, 35, 1195-1199.	0.8	11
376	Enhancement of 1536nm emission of Er doped ZnO nanopowder by Ag doping. Optical Materials, 2014, 36, 1295-1298.	1.7	11
377	Preparation of dense spherical AlN fillers by aqueous granulation and post-sintering process. Ceramics International, 2017, 43, 2027-2032.	2.3	11
378	Effect of driving force on pressure slip casting of silicon carbide bodies. Journal of the European Ceramic Society, 1998, 18, 1171-1175.	2.8	10

#	Article	IF	CITATIONS
379	Influence of temperature on the colloidal processing of electrostatically stabilised alumina suspensions. Journal of Materials Processing Technology, 2003, 137, 102-109.	3.1	10
380	Effect of homogenizing procedures on the slip casting of reaction sialon suspensions. Ceramics International, 2004, 30, 745-749.	2.3	10
381	Adsorption of Cations from a Cement Suspension onto Lignocellulosic Substrates and its Influence on Cement Setting. Journal of Wood Chemistry and Technology, 2005, 25, 231-244.	0.9	10
382	Fabrication of (Ca+Yb)- and (Ca+Sr)-stabilized α-SiAlON by combustion synthesis. Materials Research Bulletin, 2006, 41, 547-552.	2.7	10
383	Phase transformation and growth of rod-like α-SiAlON particles during combustion synthesis. Materials Letters, 2006, 60, 1276-1279.	1.3	10
384	Rheological, microstructural, and <i>in vitro</i> characterization of hybrid chitosanâ€polylactic acid/hydroxyapatite composites. Journal of Biomedical Materials Research - Part A, 2009, 88A, 916-922.	2.1	10
385	The effect of TiO2 and P2O5 on densification behavior and properties of Anortite-Diopside glass-ceramic substrates. Journal of Electroceramics, 2010, 25, 38-44.	0.8	10
386	Enhancement of near infrared emission in La co-doped ZnO/Er nanoplates. Ceramics International, 2014, 40, 12947-12951.	2.3	10
387	Effects of catalysts on polymerization and microstructure of solâ€gel derived bioglasses. Journal of the American Ceramic Society, 2018, 101, 2831-2839.	1.9	10
388	Role of vanadium oxide on the lithium silicate glass structure and properties. Journal of the American Ceramic Society, 2021, 104, 2495-2505.	1.9	10
389	Sol–Gel Synthesis and Characterization of a Quaternary Bioglass for Bone Regeneration and Tissue Engineering. Materials, 2021, 14, 4515.	1.3	10
390	Hydrothermal Synthesis and Appraisal of Mg-Doped Hydroxyapatite Nanopowders. Journal of Biomaterials and Tissue Engineering, 2013, 3, 570-580.	0.0	10
391	Robocasting of 3D printed and sintered ceria scaffold structures with hierarchical porosity for solar thermochemical fuel production from the splitting of CO ₂ . Nanoscale, 2022, 14, 4994-5001.	2.8	10
392	Influence of pH on the pressure slip casting of silicon carbide bodies. Journal of the European Ceramic Society, 1997, 17, 259-266.	2.8	9
393	Structural and mechanical characterisation of MgO-, CaO- and BaO-doped aluminosilicate ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 35-44.	2.6	9
394	Temperature-induced gelation of concentrated silicon carbide suspensions. Journal of Colloid and Interface Science, 2004, 277, 111-115.	5.0	9
395	The fabrication and characterisation of low-k cordierite-based glass–ceramics by aqueous tape casting. Journal of the European Ceramic Society, 2004, 24, 295-300.	2.8	9
396	Migration of liquid phase in low temperature sintering of AlN. Journal of Materials Science, 2005, 40, 2425-2429.	1.7	9

#	Article	IF	CITATIONS
397	Growth mechanism of Y α-SiAlON whiskers prepared by combustion synthesis. Journal of Materials Research, 2005, 20, 889-894.	1.2	9
398	Damping associated with porosity in alumina. International Journal of Mechanics and Materials in Design, 2009, 5, 167-174.	1.7	9
399	Apatite crystallization from glasses in the Ca5(PO4)3F–CaAl2Si2O8–CaMgSi2O6–NaAlSi3O8 system. Journal of Non-Crystalline Solids, 2013, 363, 32-38.	1.5	9
400	Hydrothermal Synthesis of Siâ€doped Hydroxyapatite Nanopowders: Mechanical and Bioactivity Evaluation. International Journal of Applied Ceramic Technology, 2015, 12, 329-340.	1.1	9
401	Insights on the properties of levofloxacin-adsorbed Sr- and Mg-doped calcium phosphate powders. Journal of Materials Science: Materials in Medicine, 2016, 27, 123.	1.7	9
402	Structure and thermal relaxation of network units and crystallization of lithium silicate based glasses doped with oxides of Al and B. Physical Chemistry Chemical Physics, 2017, 19, 26034-26046.	1.3	9
403	Phosphate bioglass thin-films: Cross-area uniformity, structure and biological performance tailored by the simple modification of magnetron sputtering gas pressure. Applied Surface Science, 2021, 541, 148640.	3.1	9
404	Highly Porous Composite Scaffolds Endowed with Antibacterial Activity for Multifunctional Grafts in Bone Repair. Polymers, 2021, 13, 4378.	2.0	9
405	Effect of ageing time on pressure slip casting of silicon carbide bodies. Journal of the European Ceramic Society, 1997, 17, 333-337.	2.8	8
406	Cost-effective fabrication of porous α-SiAlON bonded β-SiAlON ceramics. Materials Letters, 2005, 59, 2601-2604.	1.3	8
407	Preparation of Ca Î \pm -SiAlON powders with rod-like crystals by combustion synthesis. Ceramics International, 2006, 32, 411-416.	2.3	8
408	Fabrication of Si3N4–SiC nano-composite ceramics through temperature-induced gelation and liquid phase sintering. Journal of the European Ceramic Society, 2006, 26, 337-341.	2.8	8
409	Electrodeposition of Fluorineâ€Doped Calcium Phosphate Coatings onto Ti6Al4V Alloy—Chemical and Structural Characterization. Journal of the American Ceramic Society, 2008, 91, 2797-2801.	1.9	8
410	Vitrification of low silica fly ash: suitability of resulting glass ceramics for architectural or electrical insulator applications. Advances in Applied Ceramics, 2009, 108, 27-32.	0.6	8
411	The effect of fluoride ions on the structure and crystallization kinetics of La2O3-containing diopside based oxyfluoride glasses. Ceramics International, 2009, 35, 3489-3493.	2.3	8
412	Hydrolysis-Induced Aqueous Gelcasting of Magnesium Aluminate Spinel. International Journal of Applied Ceramic Technology, 2011, 8, 873-884.	1.1	8
413	Sintering behavior and devitrification kinetics of iron containing clinopyroxene based magnetic glass-ceramics. Solid State Ionics, 2011, 186, 59-68.	1.3	8
414	Al2O3/K2O-containing non-stoichiometric lithium disilicate-based glasses. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1359-1368.	2.0	8

#	Article	IF	CITATIONS
415	Development and rheological characterisation of an industrial liquid fuel consisting of charcoal dispersed in water. Journal of the Energy Institute, 2018, 91, 519-526.	2.7	8
416	Design and synthesis of foam glasses from recycled materials. International Journal of Applied Ceramic Technology, 2020, 17, 64-74.	1.1	8
417	Robocasting and surface functionalization with highly bioactive glass of ZrO ₂ scaffolds for load bearing applications. Journal of the American Ceramic Society, 2022, 105, 1753-1764.	1.9	8
418	3D Printing of Macro Porous Sol-Gel Derived Bioactive Glass Scaffolds and Assessment of Biological Response. Materials, 2021, 14, 5946.	1.3	8
419	Colloidal processing of cordierite-based glass-ceramics. Solid State Sciences, 2001, 3, 1249-1252.	0.8	7
420	Silicon carbide ceramics through temperature-induced gelation and pressureless sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 382, 335-340.	2.6	7
421	Shape deformation and texture development of consolidated Ca α-SiAlON ceramics prepared by hot-forging. Materials Research Bulletin, 2008, 43, 425-430.	2.7	7
422	Sintering and crystallization behavior of CaMgSi2O6–NaFeSi2O6 based glass-ceramics. Journal of Applied Physics, 2009, 106, .	1.1	7
423	Meltâ€Derived Condensed Polymorphic Calcium Phosphate as Bone Substitute Material: An <i>In Vitro</i> Study. Journal of the American Ceramic Society, 2011, 94, 3023-3029.	1.9	7
424	Characterization of cement-bonded particleboards manufactured with maritime pine, blue gum and cork grown in Portugal. European Journal of Wood and Wood Products, 2012, 70, 107-111.	1.3	7
425	Sintering behaviour of diopside (CaOâ^™MgOâ^™2SiO2)–fluorapatite (9CaOâ^™3P2O5â^™CaF2) bioactive gla Journal of Non-Crystalline Solids, 2013, 380, 17-24.	^{ISS.} 1.5	7
426	Statistics of silicate units in binary glasses. Journal of Chemical Physics, 2016, 145, 124505.	1.2	7
427	Dependence of Eu3+ photoluminescence properties on structural transformations in diopside-based glass-ceramics. Journal of Alloys and Compounds, 2017, 699, 856-865.	2.8	7
428	The influence of processing parameters on morphology and granulometry of a wet-milled sol-gel glass powder. Ceramics International, 2018, 44, 12754-12762.	2.3	7
429	Cytotoxicity and bioactivity assessments for Cu ²⁺ and La ³⁺ doped highâ€silica solâ€gel derived bioglasses: The complex interplay between additive ions revealed. Journal of Biomedical Materials Research - Part A, 2019, 107, 2680-2693.	2.1	7
430	Synthesis, gelation behaviour and evolution of oligomeric structure of BaTi double alkoxide. Materials Letters, 2000, 42, 257-261.	1.3	6
431	Pressureless sintering of in-situ toughened Yb α-SiAlON ceramics by adding seed crystals prepared by combustion synthesis. Journal of Materials Science, 2006, 41, 1791-1796.	1.7	6
432	Phase transformation and microstructure development of in situ toughened Yb α-SiAlON ceramics prepared by two-step hot-pressing. Materials Chemistry and Physics, 2006, 98, 159-164.	2.0	6

#	Article	IF	CITATIONS
433	Vacuum infiltration of copper aluminate by liquid aluminium. Ceramics International, 2011, 37, 3631-3635.	2.3	6
434	Structural and Optical Investigation of Rare Earth Doped Oxyfluoride Glasses. Transactions of the Indian Ceramic Society, 2013, 72, 18-20.	0.4	6
435	The effects of Cu2+ and La3+ doping on the sintering ability of sol-gel derived high silica bioglasses. Ceramics International, 2019, 45, 10269-10278.	2.3	6
436	Influence of the silica matrix on the formation of Â-alumina in a mullite–alumina composite from a diphasic precursor. Journal of Materials Science, 1998, 33, 1851-1856.	1.7	5
437	A novel wet-chemical process to synthesise Ba(Mg1/3Ta2/3)O3 nanopowders. Ceramics International, 2002, 28, 549-552.	2.3	5
438	Fabrication of α-sialon sheets by tape castingand pressureless sintering. Journal of Materials Research, 2003, 18, 1363-1367.	1.2	5
439	Fabrication of yttrium-stabilized α-SiAlON powders with rod-like crystals by combustion synthesis. Journal of Materials Science, 2006, 41, 6062-6068.	1.7	5
440	Solid-state NMR and XRD study of α-SiAlON powders prepared by combustion synthesis. Journal of Alloys and Compounds, 2007, 439, 268-274.	2.8	5
441	Tailoring of phase assemblage and grain morphology of (Nd,Dy)-containing SiAlON powders prepared by combustion synthesis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 310-313.	2.6	5
442	A note on tribological behaviour of α-sialon/steel couples under dry conditions. Materials & Design, 2007, 28, 1343-1347.	5.1	5
443	Influence of processing route and SiO ₂ on sintering ability, CTE, and dielectric constant of β-Si ₄ Al ₂ O ₂ N ₆ . Journal of Materials Research, 2008, 23, 2305-2311.	1.2	5
444	Biotoxicity study of bone cement based on a functionalised multi-walled carbon nanotube-reinforced PMMA/HAp nanocomposite. International Journal of Nano and Biomaterials, 2009, 2, 442.	0.1	5
445	SrOâ€Containing Diopside Glass–Ceramic Sealants for Solid Oxide Fuel Cells: Mechanical Reliability and Thermal Shock Resistance. Fuel Cells, 2013, 13, 689-694.	1.5	5
446	Structure, properties and crystallization of non-stoichiometric lithium disilicate glasses containing CaF2. Journal of Non-Crystalline Solids, 2014, 406, 54-61.	1.5	5
447	A new class of closed-cell aluminium foams reinforced with carbon nanotubes. Ciência & Tecnologia Dos Materiais, 2016, 28, 5-8.	0.5	5
448	The Influence of Cu ²⁺ and Mn ²⁺ Ions on the Structure and Crystallization of Diopside–Calcium Pyrophosphate Bioglasses. International Journal of Applied Glass Science, 2016, 7, 345-354.	1.0	5
449	Tailoring the viscoelastic properties of injectable biocomposites: A spectroscopic assessment of the interactions between organic carriers and bioactive glass particles. Materials and Design, 2016, 97, 45-50.	3.3	5
450	Can the regenerative potential of an alkali-free bioactive glass composition be enhanced when mixed with resorbable Î ² -TCP?. Ceramics International, 2018, 44, 5025-5031.	2.3	5

#	Article	IF	CITATIONS
451	Cuttlefish Bone-Derived Biphasic Calcium Phosphate Scaffolds Coated with Sol-Gel Derived Bioactive Glass. Materials, 2019, 12, 2711.	1.3	5
452	Effect of Vanadium Oxide on the Structure and Li-Ion Conductivity of Lithium Silicate Glasses. Journal of Physical Chemistry C, 2021, 125, 16843-16857.	1.5	5
453	The key Features expected from a Perfect Bioactive Glass –How Far we still are from an Ideal Composition?. Biomedical Journal of Scientific & Technical Research, 2017, 1, .	0.0	5
454	Influence of shear intensity during slip preparation on rheological characteristics of calcium carbonate suspensions. Ceramics International, 2003, 29, 365-370.	2.3	4
455	Synthesis, Characterization, and Processing of Cordieriteâ€Glass Particles Modified by Coating with an Alumina Precursor. Journal of the American Ceramic Society, 2002, 85, 155-160.	1.9	4
456	Formation and Densification Behavior of Mullite Aggregates from Beach Sand Sillimanite. Journal of the American Ceramic Society, 2008, 91, 2464-2468.	1.9	4
457	Effect of Ni precursor solution concentration on the magnetic properties and exchange bias of Ni-NiO nanoparticulate systems. Journal of Applied Physics, 2014, 116, 093906.	1.1	4
458	Preventing hydrolysis of BaTiO3 powders during aqueous processing and of bulk ceramics after sintering. Journal of the European Ceramic Society, 2015, 35, 2471-2478.	2.8	4
459	Effects of <scp>M</scp> gâ€Doping and of Reinforcing <scp>Multiwalled Carbon Nanotubes</scp> Content on the Structure and Properties of Hydroxyapatite Nanocomposite Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, 264-272.	1.1	4
460	Comparison of the cadmium removal efficiency by two calcium phosphate powders. Journal of Environmental Chemical Engineering, 2017, 5, 1475-1483.	3.3	4
461	3D multiscale controlled micropatterning of lead-free piezoelectric electroceramics via Epoxy Gel Casting and lift-off. Journal of the European Ceramic Society, 2017, 37, 3079-3087.	2.8	4
462	The role of calcium (source & content) on the in vitro behaviour of sol–gel quaternary glass series. Ceramics International, 2020, 46, 1065-1075.	2.3	4
463	Combined Occupancy of Gadolinium at the Lattice Sites of β a ₃ (PO ₄) ₂ and <i>t</i> â€ZrO ₂ Crystal Structures. European Journal of Inorganic Chemistry, 2020, 2020, 1163-1171.	1.0	4
464	Development of microfibers for bone regeneration based on alkaliâ€free bioactive glasses doped with boron oxide. Journal of the American Ceramic Society, 2021, 104, 4492-4504.	1.9	4
465	Preparation of hybrid nanocomposite particles for medical practices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126706.	2.3	4
466	New and Efficient Bioactive Glass Compositions for Controlling Endodontic Pathogens. Nanomaterials, 2022, 12, 1577.	1.9	4
467	Hydrothermal ageing effects on the coprecipitated mullite-alumina composite precursor. Journal of the European Ceramic Society, 1997, 17, 1539-1544.	2.8	3
468	Sintering of mullite–alumina composites from diphasic precursors. Ceramics International, 1999, 25, 325-330.	2.3	3

#	Article	IF	CITATIONS
469	Influence of Li2O Doping on Non-Isothermal Evolution of Phases in K-Na-Containing Aluminosilicate Matrix. Journal of the American Ceramic Society, 2006, 89, 292-297.	1.9	3
470	Formation of Yb α-SiAlON whiskers by heat treatment of hot-pressed bulk samples. Journal of Alloys and Compounds, 2007, 430, 269-273.	2.8	3
471	Crystallisation kinetics of diopside-Ca-Tschermak based glasses nucleated with Cr <sub align=right>2O_{3 and Fe_{2O_{3. International Journal of Materials Engineering Innovation, 2009, 1, 40.}}}</sub 	0.2	3
472	Quantum cutting effect and photoluminescence emission at about 1,000Ânm from Er–Yb co-doped ZnO nanoplates prepared by wet chemical precipitation method. Applied Physics A: Materials Science and Processing, 2014, 117, 2289-2294.	1.1	3
473	Enhanced local piezoelectric response in the erbium-doped ZnO nanostructures prepared by wet chemical synthesis. Journal of Asian Ceramic Societies, 2017, 5, 1-6.	1.0	3
474	Independent and complementary bio-functional effects of CuO and Ga2O3 incorporated as therapeutic agents in silica- and phosphate-based bioactive glasses. Journal of Materiomics, 2022, 8, 893-905.	2.8	3
475	Conversion of rapid prototyping models into metallic tools by ceramic moulding - an indirect rapid tooling process. International Journal of Materials and Product Technology, 2004, 21, 317.	0.1	2
476	Cryoâ€Xâ€ray analysis—A novel tool to better understand the physicochemical reactions at the bioglass/biological fluid interface. Microscopy Research and Technique, 2008, 71, 684-688.	1.2	2
477	Dynamic Stability of Organic Conducting Polymers and Its Replication in Electrical Conduction and Degradation Mechanisms. Advanced Functional Materials, 2011, 21, 2240-2250.	7.8	2
478	Reaction Mechanisms in <scp><scp>Al</scp></scp> ₂ <scp><scp>O</scp>3/<scp><scp>CuO</scp> Infiltration by Liquid <scp><scp>Al</scp></scp>. Journal of the American Ceramic Society, 2012, 95, 3064-3070.</scp></scp>	×1.9	2
479	Use of colemanite and borax penta-hydrate in soda lime silicate glass melting - A strategy to reduce energy consumption and improve glass properties. Ceramics International, 2022, 48, 1181-1190.	2.3	2
480	Preparation of (Ca, Mg) α-SiAlON powders by combustion synthesis. Journal of Materials Science, 2005, 40, 3255-3257.	1.7	1
481	Fostering Hydroxyapatite Bioactivity and Mechanical Strength by Si-Doping and Reinforcing with Multiwall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2014, 14, 4409-4417.	0.9	1
482	A Thermo-Chemical Surface Treatment of AlN Powder for the Aqueous Processing of AlN Ceramics. , 2004, 19, 746.		1
483	Title is missing!. Journal of Materials Science Letters, 2000, 19, 1751-1753.	0.5	0
484	Effect of Aging Time on the Stability of Aqueous Yâ€Î±â€SiAlON Precursor Powder Suspensions. Journal of the American Ceramic Society, 2010, 93, 1608-1613.	1.9	0
485	Recrystallization of Amorphized α-TCP. Key Engineering Materials, 0, 493-494, 219-224.	0.4	0

486 2. Advanced electroceramic composites: Property control through processing. , 0, , .

0

#	Article	IF	CITATIONS
487	Corrigendum to â€~Ba-doped ZnO nanostructure: X-ray line analysis and optical properties in visible and low frequency infrared' [Ceram. Int. (2016) 12860–12867]. Ceramics International, 2016, 42, 16436.	2.3	0
488	Two different techniques used in the production of foam structures: 3D printing and glass foaming. Ciência & Tecnologia Dos Materiais, 2016, 28, 29-33.	0.5	0
489	Remembering Joanna McKittrick. Journal of the American Ceramic Society, 2020, 103, 2277-2277.	1.9	0