Rana Ellen Munns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993621/publications.pdf Version: 2024-02-01

		9264	15732
131	39,427	74	125
papers	citations	h-index	g-index
133	133	133	18165
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types. Journal of Proteomics, 2022, 256, 104502.	2.4	10
2	Proteomic analysis of young sugarcane plants with contrasting salt tolerance. Functional Plant Biology, 2021, 48, 588.	2.1	10
3	Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 2020, 225, 1091-1096.	7.3	245
4	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	7.3	284
5	What makes a plant science manuscript successful for publication?. Functional Plant Biology, 2020, 47, 1138.	2.1	3
6	Breeding strategies for structuring salinity tolerance in wheat. Advances in Agronomy, 2019, 155, 121-187.	5.2	53
7	Adaptation of sugarcane plants to saline soil. Environmental and Experimental Botany, 2019, 162, 201-211.	4.2	37
8	Root cell wall solutions for crop plants in saline soils. Plant Science, 2018, 269, 47-55.	3.6	159
9	Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cellular and Molecular Life Sciences, 2018, 75, 1133-1144.	5.4	45
10	A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. Plant and Cell Physiology, 2018, 59, 1976-1989.	3.1	66
11	Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 2017, 68, 3129-3143.	4.8	187
12	Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Functional Plant Biology, 2016, 43, 1103.	2.1	162
13	Salt tolerance, date of flowering and rain affect the productivity of wheat and barley on rainfed saline land. Field Crops Research, 2016, 194, 31-42.	5.1	38
14	<i>Nax</i> loci affect SOS1-like Na ⁺ /H ⁺ exchanger expression and activity in wheat. Journal of Experimental Botany, 2016, 67, 835-844.	4.8	95
15	Salinity tolerance of crops – what is the cost?. New Phytologist, 2015, 208, 668-673.	7.3	868
16	Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 2015, 115, 419-431.	2.9	516
17	Protocols and phenotyping: new wikis and manuals. Functional Plant Biology, 2014, 41, v.	2.1	0
18	Reliability of ion accumulation and growth components for selecting salt tolerant lines in large populations of rice. Functional Plant Biology, 2014, 41, 379.	2.1	15

#	Article	IF	CITATIONS
19	The Na ⁺ transporter, Ta <scp>HKT</scp> 1;5â€D, limits shoot Na ⁺ accumulation in bread wheat. Plant Journal, 2014, 80, 516-526.	5.7	170
20	Using membrane transporters to improve crops for sustainable food production. Nature, 2013, 497, 60-66.	27.8	440
21	Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology, 2012, 39, 609.	2.1	86
22	The art of growing plants for experimental purposes: a practical guide for the plant biologist. Functional Plant Biology, 2012, 39, 821.	2.1	217
23	Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30, 360-364.	17.5	690
24	Plant Adaptations to Salt and Water Stress. Advances in Botanical Research, 2011, , 1-32.	1.1	149
25	Hordeum marinum-wheat amphiploids maintain higher leaf K+:Na+ and suffer less leaf injury than wheat parents in saline conditions. Plant and Soil, 2011, 348, 365-377.	3.7	28
26	A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany, 2011, 62, 69-77.	4.8	114
27	Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 2011, 62, 2939-2947.	4.8	394
28	A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Functional Plant Biology, 2010, 37, 687.	2.1	20
29	Approaches to Identifying Genes for Salinity Tolerance and the Importance of Timescale. Methods in Molecular Biology, 2010, 639, 25-38.	0.9	42
30	Measuring Soluble Ion Concentrations (Na+, K+, Clâ^') in Salt-Treated Plants. Methods in Molecular Biology, 2010, 639, 371-382.	0.9	132
31	Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 2010, 37, 255.	2.1	288
32	New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 2010, 61, 3499-3507.	4.8	359
33	Use of genetic tolerance in grain crops to overcome subsoil constraints in alkaline cropping soils. Soil Research, 2010, 48, 188.	1.1	15
34	Genetic variation in tolerance to the osmotic stress componentof salinity stress in durum wheat. Functional Plant Biology, 2008, 35, 111.	2.1	126
35	Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 2008, 59, 651-681.	18.7	9,628
36	Living with salinity. New Phytologist, 2008, 179, 903-905.	7.3	32

#	Article	IF	CITATIONS
37	Cellâ€specific localization of Na ⁺ in roots of durum wheat and possible control points for salt exclusion. Plant, Cell and Environment, 2008, 31, 1565-1574.	5.7	90
38	Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Functional Plant Biology, 2008, 35, 1172.	2.1	100
39	Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 2008, 59, 927-937.	4.8	170
40	HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna1. Plant Physiology, 2007, 143, 1918-1928.	4.8	378
41	Prophylactively parking sodium in the plant. New Phytologist, 2007, 176, 501-504.	7.3	14
42	Recent Advances in Breeding Wheat for Drought and Salt Stresses. , 2007, , 565-585.		20
43	Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 2006, 57, 1059-1078.	4.8	455
44	Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 2006, 57, 1025-1043.	4.8	1,484
45	Physiological Characterization of Two Genes for Na+ Exclusion in Durum Wheat, Nax1 and Nax2. Plant Physiology, 2006, 142, 1537-1547.	4.8	350
46	Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affected barley and durum wheat. Plant, Cell and Environment, 2006, 29, 2185-2197.	5.7	180
47	A Sodium Transporter (HKT7) Is a Candidate for Nax1, a Gene for Salt Tolerance in Durum Wheat. Plant Physiology, 2006, 142, 1718-1727.	4.8	266
48	The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Australian Journal of Experimental Agriculture, 2005, 45, 301.	1.0	92
49	Genes and salt tolerance: bringing them together. New Phytologist, 2005, 167, 645-663.	7.3	2,304
50	Control of Sodium Transport in Durum Wheat. Plant Physiology, 2005, 137, 807-818.	4.8	264
51	Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture, 2005, 45, 1425.	1.0	245
52	A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology, 2004, 31, 1105.	2.1	203
53	Control of salt transport from roots to shoots of wheat in saline soil. Functional Plant Biology, 2004, 31, 1115.	2.1	73
54	Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 2003, 253, 201-218.	3.7	609

#	Article	IF	CITATIONS
55	Growth of tomato and an ABA-deficient mutant (sitiens) under saline conditions. Physiologia Plantarum, 2003, 117, 58-63.	5.2	43
56	Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Australian Journal of Agricultural Research, 2003, 54, 589.	1.5	82
57	Genetic control of sodium exclusion in durum wheat. Australian Journal of Agricultural Research, 2003, 54, 627.	1.5	115
58	Does shoot water status limit leaf expansion of nitrogen-deprived barley?. Journal of Experimental Botany, 2002, 53, 1765-1770.	4.8	22
59	Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. , 2002, , 93-105.		61
60	Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany, 2002, 53, 1503-1514.	4.8	191
61	Stomatal control in tomato with ABAâ€deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany, 2002, 53, 1503-1514.	4.8	205
62	Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Functional Plant Biology, 2002, 29, 1065.	2.1	93
63	Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 2002, 29, 1393.	2.1	259
64	Comparative physiology of salt and water stress. Plant, Cell and Environment, 2002, 25, 239-250.	5.7	4,529
65	Title is missing!. Plant and Soil, 2002, 247, 93-105.	3.7	252
66	Salinity, Growth and Phytohormones. , 2002, , 271-290.		11
67	Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. Journal of Experimental Botany, 2002, 53, 1503-14.	4.8	165
68	Plants and salt New Phytologist, 2000, 148, 219-219.	7.3	0
69	Genetic variation for improving the salt tolerance of durum wheat. Australian Journal of Agricultural Research, 2000, 51, 69.	1.5	218
70	Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley Functional Plant Biology, 2000, 27, 949.	2.1	32
71	Water relations and leaf expansion: importance of time scale. Journal of Experimental Botany, 2000, 51, 1495-1504.	4.8	171
72	Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate Functional Plant Biology, 2000, 27, 941.	2.1	42

#	Article	IF	CITATIONS
73	Yellow lupin (Lupinus luteus) tolerates waterlogging better than narrow-leafed lupin (L.) Tj ETQq1 1 0.784314 rgB Agricultural Research, 2000, 51, 729.	T /Overloo 1.5	ck 10 Tf 50 7
74	Interactions between Rising CO2, Soil Salinity, and Plant Growth. , 1999, , 139-167.		34
75	Does water and phosphorus uptake limit leaf growth of Rhizoctonia-infected wheat seedlings?. Plant and Soil, 1999, 209, 157-166.	3.7	20
76	Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Functional Plant Biology, 1999, 26, 459.	2.1	78
77	Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt- or drought-stressed tomato. Functional Plant Biology, 1998, 25, 655.	2.1	64
78	Effect of Water Stress on Cell Division and Cdc2-Like Cell Cycle Kinase Activity in Wheat Leaves1. Plant Physiology, 1998, 117, 667-678.	4.8	217
79	Contribution of Rhizoctonia to reduced seedling growth of direct-drilled wheat: studies with intact cores. Australian Journal of Agricultural Research, 1997, 48, 1231.	1.5	8
80	Water Status and ABA Content of Floral Organs in Drought-Stressed Wheat. Functional Plant Biology, 1996, 23, 763.	2.1	83
81	Genetically Engineered Plants Resistant to Soil Drying and Salt Stress: How to Interpret Osmotic Relations?. Plant Physiology, 1996, 110, 1051-1053.	4.8	117
82	ls coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant and Soil, 1996, 185, 33-49.	3.7	140
83	Reduced growth and yield of wheat with conservation cropping. II. Soil biological factors limit growth under direct drilling. Australian Journal of Agricultural Research, 1995, 46, 75.	1.5	56
84	The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley. Functional Plant Biology, 1995, 22, 561.	2.1	258
85	Regulation of Shoot Growth in Dry Soils by Abscisic Acid and by Root Messages. , 1994, , 303-313.		Ο
86	Stored xylem sap from wheat and barley in drying soil contains a transpiration inhibitor with a large molecular size. Plant, Cell and Environment, 1993, 16, 867-872.	5.7	47
87	Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment, 1993, 16, 15-24.	5.7	1,161
88	Involvement of Abscisic Acid in Controlling Plant Growth in Soil of Low Water Potential. Functional Plant Biology, 1993, 20, 425.	2.1	132
89	Elevated CO2 Improves the Growth of Wheat Under Salinity. Functional Plant Biology, 1993, 20, 349.	2.1	61
90	Sodium Accumulation in Leaves of Triticum Species That Differ in Salt Tolerance. Functional Plant Biology, 1992, 19, 331.	2.1	108

#	Article	IF	CITATIONS
91	Plant Responses to Salinity Under Elevated Atmospheric Concentrations of CO2. Australian Journal of Botany, 1992, 40, 515.	0.6	76
92	The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theoretical and Applied Genetics, 1992, 84-84, 714-719.	3.6	72
93	A Leaf Elongation Assay Detects an Unknown Growth Inhibitor in Xylem Sap From Wheat and Barley. Functional Plant Biology, 1992, 19, 127.	2.1	52
94	The Role of the Stem in the Partitioning of Na+and K+in Salt-Treated Barley. Journal of Experimental Botany, 1991, 42, 697-704.	4.8	121
95	Variation in Sodium Exclusion and Salt Tolerance in <i>Triticum tauschii</i> . Crop Science, 1991, 31, 992-997.	1.8	98
96	Abscisic Acid Levels in Nacl-Treated Barley, Cotton and Saltbush. Functional Plant Biology, 1991, 18, 17.	2.1	66
97	Concentrations and Transport of Solutes in Xylem and Phloem along the Leaf Axis of NaCl-treatedHordeum vulgare. Journal of Experimental Botany, 1990, 41, 1133-1141.	4.8	70
98	Effect of high external NaCl concentrations on ion transport within the shoot of Lupinus albus. I. Ions in xylem sap. Plant, Cell and Environment, 1988, 11, 283-289.	5.7	36
99	Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus. II. Ions in phloem sap. Plant, Cell and Environment, 1988, 11, 291-300.	5.7	47
100	Why Measure Osmotic Adjustment?. Functional Plant Biology, 1988, 15, 717.	2.1	198
101	An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Australian Journal of Agricultural Research, 1988, 39, 759.	1.5	121
102	Growth and Development in NaCl-Treated Plants. II. Do Na+ or Cl- Concentrations in Dividing or Expanding Tissues Determine Growth in Barley?. Functional Plant Biology, 1988, 15, 529.	2.1	53
103	Abscisic Acid Is Not the Only Stomatal Inhibitor in the Transpiration Stream of Wheat Plants. Plant Physiology, 1988, 88, 703-708.	4.8	178
104	Growth and Development in NaCl-Treated Plants. I. Leaf Na+ and Cl- Concentrations Do Not Determine Gas Exchange of Leaf Blades in Barley. Functional Plant Biology, 1988, 15, 519.	2.1	59
105	Whole-Plant Responses to Salinity. Functional Plant Biology, 1986, 13, 143.	2.1	843
106	Soil Water Status Affects the Stomata1. Functional Plant Biology, 1986, 13, 459.	2.1	311
107	Use of Concentrated Macronutrient Solutions to Separate Osmotic from NaCl-specific Effects on Plant Growth. Functional Plant Biology, 1986, 13, 509.	2.1	75
108	Na+ and Cl- Transport in the Phloem from Leaves of NaCl-treated Barley. Functional Plant Biology, 1986, 13, 757.	2.1	39

#	Article	IF	CITATIONS
109	Na+, K+and Clâ^'in Xylem Sap Flowing to Shoots of NaCl-Treated Barley. Journal of Experimental Botany, 1985, 36, 1032-1042.	4.8	128
110	Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley. Plant Physiology, 1985, 77, 869-872.	4.8	188
111	Leaf expansion in sunflower as influenced by salinity and short-term changes in carbon fixation Plant, Cell and Environment, 1984, 7, 207-213.	5.7	45
112	Hydraulic Resistance of Plants. II. Effects of Rooting Medium, and Time of Day, in Barley and Lupin. Functional Plant Biology, 1984, 11, 341.	2.1	109
113	Hydraulic Resistance of Plants. III. Effects of NaCl in Barley and Lupin. Functional Plant Biology, 1984, 11, 351.	2.1	101
114	Effect of Prolonged Exposure to Nacl on the Osmotic Pressure of Leaf Xylem Sap From Intact, Transpiring Barley Plants. Functional Plant Biology, 1984, 11, 497.	2.1	55
115	Leaf expansion in sunflower as influenced by salinity and short-term changes in carbon fixation. Plant, Cell and Environment, 1984, 7, 207-213.	5.7	26
116	Interactions between growth, Cl- and Na+ uptake, and water relations of plants in saline environments. I. Slightly vacuolated cells. Plant, Cell and Environment, 1983, 6, 567-574.	5.7	25
117	Interactions between growth, uptake of Cl- and Na+, and water relations of plants in saline environments. II. Highly vacuolated cells. Plant, Cell and Environment, 1983, 6, 575-589.	5.7	66
118	Turgor Pressure, Volumetric Elastic Modulus, Osmotic Volume and Ultrastructure of Chlorella emersonii Grown at High and Low External NaCl. Journal of Experimental Botany, 1983, 34, 144-155.	4.8	50
119	Ion Concentration and Carbohydrate Status of the Elongating Leaf Tissue 4Hordeum vulgare Growing at High External NaCl: I. RELATIONSHIP BETWEEN SOLUTE CONCENTRATION AND GROWTH. Journal of Experimental Botany, 1982, 33, 557-573.	4.8	99
120	Ion Concentration and Carbohydrate Status of the Elongating Leaf Tissue 4Hordeum vulgare Growing at High External NaCl: II. CAUSE OF THE GROWTH REDUCTION. Journal of Experimental Botany, 1982, 33, 574-583.	4.8	141
121	Effects of accumulation of 3-O-methylglucose on levels of endogenous osmotic solutes in Chlorella emersonii. Plant, Cell and Environment, 1982, 5, 405-412.	5.7	16
122	Effects of accumulation of 3-O-methylglucose on growth and osmotic regulation in Chlorella emersonii. Plant, Cell and Environment, 1982, 5, 413-416.	5.7	11
123	Contribution of Sugars to Osmotic Adjustment in Elongating and Expanded Zones of Wheat Leaves During Moderate Water Deficits at Two Light Levels. Functional Plant Biology, 1981, 8, 93.	2.1	151
124	Water Relations of the Developing Wheat Grain. Functional Plant Biology, 1980, 7, 519.	2.1	73
125	Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 1980, 31, 149-190.	10.9	3,234
126	Polyribosome Content in Young and Aged Wheat Leaves Subjected to Drought. Journal of Experimental Botany, 1979, 30, 905-911.	4.8	28

#	Article	IF	CITATIONS
127	Solute Accumulation in the Apex and Leaves of Wheat During Water Stress. Functional Plant Biology, 1979, 6, 379.	2.1	128
128	Water Potential, Growth, and Polyribosome Content of the Stressed Wheat Apex. Journal of Experimental Botany, 1977, 28, 909-916.	4.8	38
129	RNA synthesis during chloroplast development in Euglena gracilis. Phytochemistry, 1972, 11, 45-52.	2.9	14
130	Chloroplast and cytoplasmic ribosomes in Euglena gracilis. FEBS Letters, 1970, 10, 149-152.	2.8	24
131	Rapidly labelled ribosomal RNA from the agranular microsomal membranes of rat liver. Archives of Biochemistry and Biophysics, 1968, 127, 419-425.	3.0	5