
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993468/publications.pdf Version: 2024-02-01



Ιιινννι Ζητι

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Graphene Oxideâ^MnO <sub>2</sub> Nanocomposites for Supercapacitors. ACS Nano, 2010, 4, 2822-2830.                                                                                                      | 14.6 | 1,983     |
| 2  | Grapheneâ^'Metal Particle Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 19841-19845.                                                                                                      | 3.1  | 1,466     |
| 3  | Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next<br>Generation of Highâ€Performance Supercapacitors. Advanced Materials, 2011, 23, 2833-2838.            | 21.0 | 954       |
| 4  | Highâ€Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed<br>Na <sub>0.5</sub> MnO <sub>2</sub> Nanosheet Assembled Nanowall Arrays. Advanced Materials, 2017,<br>29, 1700804. | 21.0 | 526       |
| 5  | One-Step Synthesis of Grapheneâ^'Cobalt Hydroxide Nanocomposites and Their Electrochemical<br>Properties. Journal of Physical Chemistry C, 2010, 114, 11829-11834.                                      | 3.1  | 313       |
| 6  | Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochimica Acta, 2005, 437, 106-109.                                             | 2.7  | 298       |
| 7  | Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. Journal of Materials<br>Chemistry, 2008, 18, 5625.                                                                             | 6.7  | 290       |
| 8  | Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system.<br>Applied Catalysis B: Environmental, 2017, 202, 430-437.                                             | 20.2 | 253       |
| 9  | Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters, 2004, 58, 3324-3327.                                                                              | 2.6  | 243       |
| 10 | 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy, 2019, 56, 109-117.                                            | 16.0 | 223       |
| 11 | Ag/g-C <sub>3</sub> N <sub>4</sub> catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale, 2015, 7, 13723-13733.      | 5.6  | 216       |
| 12 | Synthesis of amphiphilic graphite oxide. Carbon, 2008, 46, 386-389.                                                                                                                                     | 10.3 | 197       |
| 13 | Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale, 2014, 6, 12555-12564.                                 | 5.6  | 194       |
| 14 | Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale, 2010, 2,<br>988.                                                                                             | 5.6  | 175       |
| 15 | Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. Journal of Power Sources, 2014, 266, 384-392.                                       | 7.8  | 169       |
| 16 | Shape-Controlled Synthesis of One-Dimensional MnO <sub>2</sub> via a Facile Quick-Precipitation Procedure and its Electrochemical Properties. Crystal Growth and Design, 2009, 9, 4356-4361.            | 3.0  | 167       |
| 17 | Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for<br>Anhydrous Proton Conduction. Journal of the American Chemical Society, 2020, 142, 14357-14364.                | 13.7 | 167       |
| 18 | Self-standing porous LiMn 2 O 4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy, 2016, 22, 475-482.                                | 16.0 | 166       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reduced graphene oxide decorated with CuO–ZnO hetero-junctions: towards high selective<br>gas-sensing property to acetone. Journal of Materials Chemistry A, 2014, 2, 18635-18643.                                             | 10.3 | 150       |
| 20 | Optimizing Hybridization of 1T and 2H Phases in MoS <sub>2</sub> Monolayers to Improve Capacitances of Supercapacitors. Materials Research Letters, 2015, 3, 177-183.                                                          | 8.7  | 149       |
| 21 | In situ fabrication of novel Z-scheme Bi 2 WO 6 quantum dots/g-C 3 N 4 ultrathin nanosheets<br>heterostructures with improved photocatalytic activity. Applied Surface Science, 2015, 355, 379-387.                            | 6.1  | 141       |
| 22 | Yolk–shell-structured MnO <sub>2</sub> microspheres with oxygen vacancies for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 1601-1611.                                                          | 10.3 | 135       |
| 23 | Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with<br>Enhanced Oxygen Reduction Electrocatalysis. ACS Nano, 2020, 14, 2436-2444.                                                     | 14.6 | 130       |
| 24 | From Graphene to Metal Oxide Nanolamellas: A Phenomenon of Morphology Transmission. ACS Nano, 2010, 4, 6212-6218.                                                                                                              | 14.6 | 116       |
| 25 | Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric<br>supercapacitors with high energy density and long cycle-life. Journal of Power Sources, 2018, 378,<br>31-39.               | 7.8  | 115       |
| 26 | Preparation and characterization of perovskite LaFeO3 nanocrystals. Materials Letters, 2006, 60,<br>1767-1770.                                                                                                                 | 2.6  | 110       |
| 27 | Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. Journal of Power Sources, 2015, 294, 31-50.                                                                                           | 7.8  | 107       |
| 28 | Cobalt Sulfide/Graphene Composite Hydrogel as Electrode for High-Performance Pseudocapacitors.<br>Scientific Reports, 2016, 6, 21717.                                                                                          | 3.3  | 105       |
| 29 | Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic<br>Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.                                           | 13.7 | 103       |
| 30 | NbS <sub>2</sub> Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li <sup>+</sup> and<br>Na <sup>+</sup> Storage. ACS Nano, 2017, 11, 10599-10607.                                                                          | 14.6 | 95        |
| 31 | Dense films formed during Ti anodization in NH4F electrolyte: Evidence against the field-assisted dissolution reactions of fluoride ions. Electrochemistry Communications, 2020, 111, 106663.                                  | 4.7  | 95        |
| 32 | Recent development and applications of electrical conductive MOFs. Nanoscale, 2021, 13, 485-509.                                                                                                                               | 5.6  | 95        |
| 33 | Strong Chemical Interaction between Lithium Polysulfides and Flameâ€Retardant Polyphosphazene for<br>Lithium–Sulfur Batteries with Enhanced Safety and Electrochemical Performance. Advanced<br>Materials, 2021, 33, e2007549. | 21.0 | 93        |
| 34 | Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage.<br>Nanoscale Horizons, 2016, 1, 340-374.                                                                                           | 8.0  | 92        |
| 35 | Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nature<br>Communications, 2020, 11, 845.                                                                                        | 12.8 | 92        |
| 36 | Depositing ZnO nanoparticles onto graphene in a polyol system. Materials Chemistry and Physics, 2011,<br>125, 617-620.                                                                                                         | 4.0  | 91        |

Јимwи Ζни

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cadmium Sulfide–Ferrite Nanocomposite as a Magnetically Recyclable Photocatalyst with Enhanced<br>Visible-Light-Driven Photocatalytic Activity and Photostability. Industrial & Engineering Chemistry<br>Research, 2013, 52, 17126-17133. | 3.7  | 90        |
| 38 | Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Research, 2012, 5, 11-19.                                                                                  | 10.4 | 89        |
| 39 | Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties. Physical Chemistry Chemical Physics, 2013, 15, 12940.                                                                     | 2.8  | 89        |
| 40 | Salt-Assisted Synthesis of 3D Porous g-C <sub>3</sub> N <sub>4</sub> as a Bifunctional Photo- and Electrocatalyst. ACS Applied Materials & amp; Interfaces, 2019, 11, 27226-27232.                                                        | 8.0  | 89        |
| 41 | Rambutanâ€Like Hybrid Hollow Spheres of Carbon Confined Co <sub>3</sub> O <sub>4</sub><br>Nanoparticles as Advanced Anode Materials for Sodiumâ€Ion Batteries. Advanced Functional Materials,<br>2019, 29, 1807377.                       | 14.9 | 89        |
| 42 | Needle-shaped nanocrystalline CuO prepared by liquid hydrolysis of Cu(OAc)2. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 384, 172-176.                                   | 5.6  | 85        |
| 43 | Preparation and characterization of Ln2Zr2O7 (Ln=La and Nd) nanocrystals and their photocatalytic properties. Journal of Alloys and Compounds, 2008, 465, 280-284.                                                                        | 5.5  | 85        |
| 44 | Synthesis and characterization of graphene paper with controllable properties via chemical reduction. Journal of Materials Chemistry, 2011, 21, 14631.                                                                                    | 6.7  | 85        |
| 45 | Fabrication of α-Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol.<br>Applied Surface Science, 2014, 292, 278-284.                                                                                              | 6.1  | 85        |
| 46 | 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. Journal of Power Sources, 2019, 414, 540-546.                                                    | 7.8  | 83        |
| 47 | TiO2 nanotube arrays with a volume expansion factor greater than 2.0: Evidence against the field-assisted ejection theory. Electrochemistry Communications, 2020, 114, 106717.                                                            | 4.7  | 82        |
| 48 | MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chemical Engineering Journal, 2019, 368, 525-532.                                                                             | 12.7 | 72        |
| 49 | Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Materials Letters, 2007, 61, 5236-5238.                                                                                                                        | 2.6  | 71        |
| 50 | One-step synthesis of low defect density carbon nanotube-doped Ni(OH)2 nanosheets with improved electrochemical performances. RSC Advances, 2011, 1, 484.                                                                                 | 3.6  | 70        |
| 51 | Synthesis of ZnO–Ag Hybrids and Their Gas-Sensing Performance toward Ethanol. Industrial &<br>Engineering Chemistry Research, 2015, 54, 8947-8953.                                                                                        | 3.7  | 70        |
| 52 | Catalytic Activity of Nanometer-Sized CuO/Fe <sub>2</sub> O <sub>3</sub> on Thermal Decompositon of<br>AP and Combustion of AP-Based Propellant. Combustion Science and Technology, 2010, 183, 154-162.                                   | 2.3  | 66        |
| 53 | Self-assembled hydrothermal synthesis for producing a MnCO3/graphene hydrogel composite and its electrochemical properties. RSC Advances, 2013, 3, 4400.                                                                                  | 3.6  | 66        |
| 54 | Synthesis of Cu-Fe3O4@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol. Materials Research Bulletin, 2014, 57, 190-196.                                                             | 5.2  | 65        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Two-dimensional organic–inorganic superlattice-like heterostructures for energy storage applications. Energy and Environmental Science, 2020, 13, 4834-4853.                                                                          | 30.8 | 64        |
| 56 | In-situ synthesis of MnCo2O4.5 nanosheets on reduced graphene oxide for a great promotion in the thermal decomposition of ammonium perchlorate. Applied Surface Science, 2019, 483, 496-505.                                          | 6.1  | 63        |
| 57 | Pressure difference-induced synthesis of P-doped carbon nanobowls for high-performance supercapacitors. Chemical Engineering Journal, 2020, 385, 123858.                                                                              | 12.7 | 60        |
| 58 | Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Applied Catalysis B: Environmental, 2021, 280, 119419.                                           | 20.2 | 60        |
| 59 | Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline<br>MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors. Chemical<br>Engineering Journal, 2021, 416, 129500. | 12.7 | 60        |
| 60 | Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis. Exploration, 2021, 1, 217.                                                                                    | 11.0 | 59        |
| 61 | Synthesis of Bi nanowire networks and their superior photocatalytic activity for Cr( <scp>vi</scp> ) reduction. Nanoscale, 2014, 6, 10062-10070.                                                                                      | 5.6  | 57        |
| 62 | Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale, 2018, 10, 1766-1773.                                                                                  | 5.6  | 57        |
| 63 | Atomic-scale regulation of anionic and cationic migration in alkali metal batteries. Nature Communications, 2021, 12, 4184.                                                                                                           | 12.8 | 57        |
| 64 | One-pot hydrothermal route to synthesize the ZnIn2S4/g-C3N4 composites with enhanced photocatalytic activity. Journal of Materials Science, 2015, 50, 8142-8152.                                                                      | 3.7  | 56        |
| 65 | A safe and efficient liquid-solid synthesis for copper azide films with excellent electrostatic stability.<br>Nano Energy, 2019, 66, 104135.                                                                                          | 16.0 | 56        |
| 66 | CuO nanocrystals with controllable shapes grown from solution without any surfactants. Materials<br>Chemistry and Physics, 2008, 109, 34-38.                                                                                          | 4.0  | 55        |
| 67 | Two-Dimensional Nanomesh Arrays as Bifunctional Catalysts for N <sub>2</sub> Electrolysis. ACS Catalysis, 2020, 10, 11371-11379.                                                                                                      | 11.2 | 55        |
| 68 | Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. Journal of the American Chemical Society, 2020, 142, 21279-21284.                                                                              | 13.7 | 54        |
| 69 | Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Materials Chemistry and Physics, 2012, 136, 897-902.                                                                     | 4.0  | 52        |
| 70 | Ultrathin two-dimensional π–d conjugated coordination polymer<br>Co <sub>3</sub> (hexaaminobenzene) <sub>2</sub> nanosheets for highly efficient oxygen evolution.<br>Journal of Materials Chemistry A, 2020, 8, 369-379.             | 10.3 | 50        |
| 71 | Synthesis, characterization and enhanced gas sensing performance of WO3 nanotube bundles. New<br>Journal of Chemistry, 2013, 37, 4241.                                                                                                | 2.8  | 49        |
| 72 | Graphene-based cobalt sulfide composite hydrogel with enhanced electrochemical properties for supercapacitors. New Journal of Chemistry, 2016, 40, 2843-2849.                                                                         | 2.8  | 49        |

| #  | Article                                                                                                                                                                                                                                                   | IF               | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 73 | Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance. Chemical Engineering Journal, 2016, 299, 217-226.                                                                                    | 12.7             | 48                 |
| 74 | The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life. Nano Energy, 2018, 43, 91-102.                                                           | 16.0             | 48                 |
| 75 | Spinel-type FeNi <sub>2</sub> S <sub>4</sub> with rich sulfur vacancies grown on reduced graphene oxide toward enhanced supercapacitive performance. Inorganic Chemistry Frontiers, 2021, 8, 2271-2279.                                                   | 6.0              | 48                 |
| 76 | Synthesis of δ-Bi2O3 microflowers and nanosheets using CH3COO(BiO) self-sacrifice precursor.<br>Materials Letters, 2016, 162, 218-221.                                                                                                                    | 2.6              | 47                 |
| 77 | Synthesis of Unique Flowerlike Bi <sub>2</sub> O <sub>2</sub> (OH)(NO <sub>3</sub> ) Hierarchical<br>Microstructures with High Surface Area and Superior Photocatalytic Performance. Chemistry - A<br>European Journal, 2017, 23, 3891-3897.              | 3.3              | 47                 |
| 78 | A Facile Hydrothermal Synthesis of a MnCo2O4@Reduced Graphene Oxide Nanocomposite for Application in Supercapacitors. Chemistry Letters, 2014, 43, 83-85.                                                                                                 | 1.3              | 45                 |
| 79 | Two-dimensional transition metal diborides: promising Dirac electrocatalysts with large reaction regions toward efficient N <sub>2</sub> fixation. Journal of Materials Chemistry A, 2019, 7, 25887-25893.                                                | 10.3             | 45                 |
| 80 | Preparing Bi <sub>12</sub> SiO <sub>20</sub> crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching. Journal of Materials Chemistry A, 2015, 3, 7413-7421.                     | 10.3             | 44                 |
| 81 | Controlled synthesis of bismuth-containing compounds (α-, β- and δ-Bi <sub>2</sub> O <sub>3</sub> ,) Tj ETQq1<br>and their photocatalytic performance. CrystEngComm. 2015. 17. 9185-9192.                                                                 | 1 0.78431<br>2.6 | l4 rgBT /Ov€<br>44 |
| 82 | Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors. Journal of Power Sources, 2018, 402, 43-52.                                                              | 7.8              | 44                 |
| 83 | Sustainable Electrosynthesis of Porous CuN <sub>3</sub> Films for Functional Energetic Chips. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 3969-3975.                                                                                           | 6.7              | 44                 |
| 84 | Band Engineering and Morphology Control of Oxygen-Incorporated Graphitic Carbon Nitride Porous<br>Nanosheets for Highly Efficient Photocatalytic Hydrogen Evolution. Nano-Micro Letters, 2021, 13, 48.                                                    | 27.0             | 43                 |
| 85 | Highly efficient removal of aqueous chromate and organic dyes by ultralong HCOOBiO nanowires.<br>Chemical Engineering Journal, 2015, 262, 169-178.                                                                                                        | 12.7             | 42                 |
| 86 | Evidence of oxygen bubbles forming nanotube embryos in porous anodic oxides. Nanoscale Advances, 2021, 3, 4659-4668.                                                                                                                                      | 4.6              | 42                 |
| 87 | Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. Applied Surface Science, 2019, 480, 888-895.                                                                                             | 6.1              | 41                 |
| 88 | Scalable synthesis of a foam-like FeS <sub>2</sub> nanostructure by a solution<br>combustion–sulfurization process for high-capacity sodium-ion batteries. Nanoscale, 2019, 11, 178-184.                                                                  | 5.6              | 40                 |
| 89 | Carbon-Induced Generation of Hierarchical Structured<br>Ni <sub>0.75</sub> Co <sub>0.25</sub> (CO <sub>3</sub> ) <sub>0.125</sub> (OH) <sub>2</sub> for<br>Enhanced Supercapacitor Performance. ACS Applied Materials & Interfaces, 2017, 9, 44441-44451. | 8.0              | 39                 |
| 90 | Labyrinth-inspired nitrogen-sulfur co-doped reduced holey graphene oxide/carbonized cellulose<br>paper: A permselective and multifunctional interlayer for high-performance lithium-sulfur batteries.<br>Journal of Power Sources, 2019, 434, 226728.     | 7.8              | 39                 |

| #   | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Surface pore-containing NiCo2O4 nanobelts with preferred (311) plane supported on reduced graphene<br>oxide: A high-performance anode material for lithium-ion batteries. Electrochimica Acta, 2018, 271,<br>137-145.                                                        | 5.2  | 38        |
| 92  | Preparation, electrochemical properties, and adsorption kinetics of<br>Ni <sub>3</sub> S <sub>2</sub> /graphene nanocomposites using alkyldithiocarbonatio complexes of<br>nickel( <scp>ii</scp> ) as single-source precursors. New Journal of Chemistry, 2013, 37, 654-662. | 2.8  | 37        |
| 93  | Biomass-derived C/N co-doped Ni(OH) <sub>2</sub> /Ni <sub>x</sub> S <sub>y</sub> with a sandwich structure for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17417-17425.                                                                                      | 10.3 | 37        |
| 94  | Synthesis of Bi2O3 architectures in DMF–H2O solution by precipitation method and their photocatalytic activity. Journal of Alloys and Compounds, 2014, 614, 353-359.                                                                                                         | 5.5  | 36        |
| 95  | Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions. Nanoscale, 2021, 13, 19840-19856.                                                                                                                                    | 5.6  | 36        |
| 96  | Mesoporous transition metal oxides quasi-nanospheres with enhanced electrochemical properties for supercapacitor applications. Journal of Colloid and Interface Science, 2016, 483, 73-83.                                                                                   | 9.4  | 35        |
| 97  | Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4· 2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5· 3H2O with ultrahigh adsorption capacity for methyl orange. Applied Surface Science, 2017, 422, 283-294.                                 | 6.1  | 35        |
| 98  | Debunking the effect of water content on anodizing current: Evidence against the traditional dissolution theory. Electrochemistry Communications, 2020, 119, 106815.                                                                                                         | 4.7  | 35        |
| 99  | Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions. Dalton Transactions, 2014, 43, 132-137.                                                                                                                       | 3.3  | 34        |
| 100 | Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol.<br>Applied Surface Science, 2015, 357, 1593-1600.                                                                                                                          | 6.1  | 34        |
| 101 | Hexagonal prism arrays constructed using ultrathin porous nanoflakes of carbon doped<br>mixed-valence Co–Mn–Fe phosphides for ultrahigh areal capacitance and remarkable cycling stability.<br>Journal of Materials Chemistry A, 2019, 7, 4431-4437.                         | 10.3 | 34        |
| 102 | Fe <sub>3</sub> O <sub>4</sub> -CoP <sub><i>x</i></sub> Nanoflowers Vertically Grown on TiN<br>Nanoarrays as Efficient and Stable Electrocatalysts for Overall Water Splitting. ACS Applied Nano<br>Materials, 2019, 2, 40-47.                                               | 5.0  | 34        |
| 103 | Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor. Journal of Power Sources, 2020, 475, 228679.                                                                                                              | 7.8  | 34        |
| 104 | Facet Engineering in Ultrathin Two-Dimensional NiFe Metal–Organic Frameworks by Coordination<br>Modulation for Enhanced Electrocatalytic Water Oxidation. ACS Sustainable Chemistry and<br>Engineering, 2021, 9, 10892-10901.                                                | 6.7  | 34        |
| 105 | Task-Specific Synthesis of 3D Porous Carbon Nitrides from the Cycloaddition Reaction and Sequential<br>Self-Assembly Strategy toward Photocatalytic Hydrogen Evolution. ACS Applied Materials &<br>Interfaces, 2020, 12, 40433-40442.                                        | 8.0  | 33        |
| 106 | Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries. Electrochimica Acta, 2017, 256, 19-27.                                                                              | 5.2  | 32        |
| 107 | Hierarchically Structured Twoâ€Dimensional Bimetallic CoNiâ€Hexaaminobenzene Coordination Polymers<br>Derived from Co(OH) <sub>2</sub> for Enhanced Oxygen Evolution Catalysis. Small, 2020, 16, e1907043.                                                                   | 10.0 | 32        |
| 108 | Batteryâ€Ðriven N <sub>2</sub> Electrolysis Enabled by Highâ€Entropy Catalysts: From Theoretical<br>Prediction to Prototype Model. Small, 2022, 18, e2106358.                                                                                                                | 10.0 | 32        |

Јимwи Zни

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. RSC Advances, 2011, 1, 1364.                                                               | 3.6  | 31        |
| 110 | MXene-based porous and robust 2D/2D hybrid architectures with dispersed Li3Ti2(PO4)3 as superior anodes for lithium-ion battery. Chemical Engineering Journal, 2021, 405, 127049.                           | 12.7 | 31        |
| 111 | An ion exchange strategy to BiOI/CH3COO(BiO) heterojunction with enhanced visible-light photocatalytic activity. Applied Surface Science, 2017, 403, 103-111.                                               | 6.1  | 30        |
| 112 | Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to<br>NiO/graphene composites for energy storage. Journal of Materials Chemistry A, 2015, 3, 21682-21689.          | 10.3 | 29        |
| 113 | Well-dispersed ultrafine nitrogen-doped TiO 2 with polyvinylpyrrolidone (PVP) acted as N-source and stabilizer for water splitting. Journal of Energy Chemistry, 2016, 25, 1-9.                             | 12.9 | 28        |
| 114 | A facile and rapid room-temperature route to hierarchical bismuth oxyhalide solid solutions with composition-dependent photocatalytic activity. Journal of Colloid and Interface Science, 2016, 477, 25-33. | 9.4  | 27        |
| 115 | Quantitative Analysis of Oxide Growth During Ti Galvanostatic Anodization. Journal of the Electrochemical Society, 2020, 167, 113501.                                                                       | 2.9  | 27        |
| 116 | Preparation and characterization of LaNiO3 nanocrystals. Materials Research Bulletin, 2006, 41, 1565-1570.                                                                                                  | 5.2  | 26        |
| 117 | Synthesis of nanosheet-based hierarchical BiO2 microtubes and its photocatalytic performance.<br>Applied Surface Science, 2018, 455, 616-621.                                                               | 6.1  | 26        |
| 118 | Great influence of a small amount of capping agents on the morphology of SnS particles using xanthate as precursor. Journal of Alloys and Compounds, 2011, 509, 2180-2185.                                  | 5.5  | 25        |
| 119 | Phosphorous/oxygen co-doped mesoporous carbon bowls as sulfur host for high performance lithium-sulfur batteries. Journal of Power Sources, 2020, 450, 227658.                                              | 7.8  | 25        |
| 120 | Two-Dimensional Molecular Sheets of Transition Metal Oxides toward Wearable Energy Storage.<br>Accounts of Chemical Research, 2020, 53, 2443-2455.                                                          | 15.6 | 25        |
| 121 | Synthesis of egg-tart shaped Bi2O2CO3 hierarchical nanostructures from single precursor and its photocatalytic performance. Materials Letters, 2015, 138, 235-237.                                          | 2.6  | 24        |
| 122 | Largeâ€Area Nanosphere Selfâ€Assembly Monolayers for Periodic Surface Nanostructures with<br>Ultrasensitive and Spatially Uniform SERS Sensing. Small, 2022, 18, e2104202.                                  | 10.0 | 24        |
| 123 | Rapid synthesis of ultrafine K2Ln2Ti3O10 (Ln=La, Nd, Sm, Gd, Dy) series and its photoactivity. Journal of<br>Solid State Chemistry, 2005, 178, 761-768.                                                     | 2.9  | 23        |
| 124 | Solution-phase synthesis of Cu2O cubes using CuO as a precursor. Materials Letters, 2008, 62, 2081-2083.                                                                                                    | 2.6  | 23        |
| 125 | Title is missing!. Journal of Materials Science Letters, 2003, 22, 253-255.                                                                                                                                 | 0.5  | 22        |
| 126 | A convenient method for preparing shape-controlled nanocrystalline Cu2O in a polyol or water/polyol system. Powder Technology, 2008, 181, 249-254.                                                          | 4.2  | 22        |

| #   | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | An in situ oxidation route to fabricate graphene nanoplate–metal oxide composites. Journal of Solid<br>State Chemistry, 2011, 184, 1393-1399.                                                                                                               | 2.9  | 22        |
| 128 | High capacity supercapacitor material based on reduced graphene oxide loading mesoporpus<br>murdochite-type Ni 6 MnO 8 nanospheres. Electrochimica Acta, 2016, 219, 284-294.                                                                                | 5.2  | 22        |
| 129 | Stabilizing Layered Structure in Aqueous Electrolyte via Dynamic Water<br>Intercalation/Deintercalation. Advanced Materials, 2022, 34, e2108541.                                                                                                            | 21.0 | 22        |
| 130 | Facile solvothermal synthesis of graphene–MnOOH nanocomposites. Journal of Solid State<br>Chemistry, 2010, 183, 2552-2557.                                                                                                                                  | 2.9  | 21        |
| 131 | Facile Fabrication of Nanoparticles Confined in Graphene Films and Their Electrochemical Properties.<br>Chemistry - A European Journal, 2013, 19, 7631-7636.                                                                                                | 3.3  | 21        |
| 132 | The construction of hierarchical hollow Double-Shelled Co3O4 for the enhanced thermal decomposition of Ammonium perchlorate. Applied Surface Science, 2022, 571, 151342.                                                                                    | 6.1  | 21        |
| 133 | Boosting Alkaline Hydrogen Evolution on Stoichiometric Molybdenum Carbonitride via an Interstitial<br>Vacancyâ€Elimination Strategy. Advanced Energy Materials, 2022, 12, .                                                                                 | 19.5 | 21        |
| 134 | Beneficial restacking of 2D nanomaterials for electrocatalysis: a case of MoS <sub>2</sub><br>membranes. Chemical Communications, 2020, 56, 7005-7008.                                                                                                      | 4.1  | 20        |
| 135 | Synthesis of Er2Ti2O7 nanocrystals and its electrochemical hydrogen storage behavior. Journal of Alloys and Compounds, 2009, 480, L45-L48.                                                                                                                  | 5.5  | 19        |
| 136 | One-pot synthesis of 3D hierarchical Bi 2 S 3 /(BiO) 2 CO 3 hollow microspheres at room temperature and their photocatalytic performance. Materials Chemistry and Physics, 2017, 187, 72-81.                                                                | 4.0  | 19        |
| 137 | PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions. Chemical Engineering Journal, 2022, 428, 131085.                                                                       | 12.7 | 19        |
| 138 | Synthesis of α-Fe2O3 with the aid of graphene and its gas-sensing property to ethanol. Ceramics<br>International, 2015, 41, 6978-6984.                                                                                                                      | 4.8  | 18        |
| 139 | CoSe <sub>2</sub> -Decorated NbSe <sub>2</sub> Nanosheets Fabricated via Cation Exchange for Li<br>Storage. ACS Applied Materials & Interfaces, 2018, 10, 37773-37778.                                                                                      | 8.0  | 18        |
| 140 | Copper Azide Nanoparticleâ€Encapsulating MOFâ€Đerived Porous Carbon: Electrochemical Preparation<br>for Highâ€Performance Primary Explosive Film. Small, 2022, 18, e2107364.                                                                                | 10.0 | 18        |
| 141 | Regulating the transformation behavior of nickel iron metal–organic frameworks through a<br>dual-ligand strategy for enhanced oxygen evolution reaction performance. Applied Surface Science,<br>2022, 592, 153252.                                         | 6.1  | 18        |
| 142 | Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk<br>Graphene Assemblies. Chemistry - A European Journal, 2013, 19, 3082-3089.                                                                                   | 3.3  | 17        |
| 143 | A simple grinding-calcination approach to prepare the<br>Co <sub>3</sub> O <sub>4</sub> –In <sub>2</sub> O <sub>3</sub> heterojunction structure with<br>high-performance gas-sensing property toward ethanol. RSC Advances, 2016, 6, 105262-105269.        | 3.6  | 17        |
| 144 | Ingenious construction of hierarchical spherical nanostructures by in-situ confining Ni–Co–Mn<br>hydroxide nanosheets inside/outside hollow carbon nanospheres for high-performance hybrid<br>supercapacitors. Journal of Energy Storage, 2021, 36, 102380. | 8.1  | 17        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Precursor-modified strategy to synthesize thin porous amino-rich graphitic carbon nitride with<br>enhanced photocatalytic degradation of RhB and hydrogen evolution performances. Chinese Journal<br>of Catalysis, 2022, 43, 497-506.          | 14.0 | 16        |
| 146 | Room-temperature synthesis of BiOCl and (BiO) 2 CO 3 with predominant {001} facets induced by urea and their photocatalytic performance. Journal of Environmental Chemical Engineering, 2017, 5, 987-994.                                      | 6.7  | 15        |
| 147 | An in situ annealing route to [Bi6O6(OH)2](NO3)4·2H2O/g-C3N4 heterojunction and its visible-light-driven photocatalytic performance. Materials Research Bulletin, 2018, 101, 272-279.                                                          | 5.2  | 15        |
| 148 | General synthesis strategy for hollow porous prismatic graphitic carbon nitride: a high-performance<br>photocatalyst for H2 production and degradation of RhB. Journal of Materials Science, 2020, 55,<br>6037-6050.                           | 3.7  | 15        |
| 149 | Hydrothermal ion exchange synthesis of CoM(M=Fe or Mn)/MXene 2D/2D hierarchal architectures for enhanced energy storage. Journal of Alloys and Compounds, 2022, 894, 162385.                                                                   | 5.5  | 15        |
| 150 | A permselective and multifunctional 3D N-doped carbon nanotubes interlayer for high-performance<br>lithium-sulfur batteries. Electrochimica Acta, 2022, 421, 140430.                                                                           | 5.2  | 15        |
| 151 | Enhanced photo-electrochemical performances of graphene-based composite functionalized by Zn2+<br>tetraphenylporphyrin. Applied Surface Science, 2014, 321, 404-411.                                                                           | 6.1  | 14        |
| 152 | Halogen-directed nucleation and growth of Bi 2 O 3 columnar hierarchitectures. Materials Research<br>Bulletin, 2016, 76, 222-228.                                                                                                              | 5.2  | 14        |
| 153 | One-step solvothermal synthesis of spherical spinel type NiFe2â^'xMnxO4-RGO as high-performance supercapacitor electrodes. Ceramics International, 2017, 43, 2226-2232.                                                                        | 4.8  | 14        |
| 154 | Unique hollow-concave CoMoSx boxes with abundant mesoporous structure for high-performance hybrid supercapacitors. Electrochimica Acta, 2020, 337, 135824.                                                                                     | 5.2  | 14        |
| 155 | Dualâ€Ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries. Advanced Energy<br>Materials, 2022, 12, .                                                                                                                   | 19.5 | 14        |
| 156 | Synthesis and characterization of BaCeO3 nanocrystals via solvothermal-based method. Journal of Rare Earths, 2008, 26, 51-54.                                                                                                                  | 4.8  | 13        |
| 157 | Morphology-controlled synthesis of ZnS nanostructures via single-source approaches. Materials<br>Research Bulletin, 2010, 45, 813-817.                                                                                                         | 5.2  | 13        |
| 158 | A facile solvent regulated method for phase control of two-dimensional nickel-cobalt hydroxide<br>nanosheets: Towards improved performance hybrid supercapacitors. Materials Chemistry and Physics,<br>2018, 218, 172-181.                     | 4.0  | 13        |
| 159 | Millingâ€Induced Synthesis of BiOCl <sub>1â€<i>x</i></sub> Br <sub><i>x</i></sub> Solid Solution and Their Adsorptive and Photocatalytic Performance. Photochemistry and Photobiology, 2018, 94, 942-954.                                      | 2.5  | 12        |
| 160 | Partial decomposition of NaBiO3 to δ-Bi2O3/NaBiO3 and α-Bi2O3/NaBiO3 heterojunctions in aqueous HAc<br>solution respectively with good adsorption ability and photocatalytic performance. Materials<br>Chemistry and Physics, 2019, 229, 6-14. | 4.0  | 12        |
| 161 | Growth Model of the Tin Anodizing Process and the Capacitive Performance of Porous Tin Oxides.<br>Journal of Physical Chemistry C, 2020, 124, 3050-3058.                                                                                       | 3.1  | 12        |
| 162 | Loofah-like carbon nitride sponge towards the highly-efficient photocatalytic transfer<br>hydrogenation of nitrophenols with water as the hydrogen source. Chemical Engineering Journal,<br>2022, 444, 136430.                                 | 12.7 | 12        |

| #   | Article                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | From understanding the formation mechanism to enhanced supercapacitor performance of VSB-5 with<br>a hierarchical structure. Journal of Materials Chemistry A, 2017, 5, 16898-16906.                                                                                               | 10.3 | 11        |
| 164 | Metal-Cluster-Directed Surface Charge Manipulation of Two-Dimensional Nanomaterials for Efficient<br>Urea Electrocatalytic Conversion. ACS Applied Nano Materials, 2018, 1, 6649-6655.                                                                                             | 5.0  | 11        |
| 165 | DFT coupled with NEGF study of the electronic properties and ballistic transport performances of 2D SbSiTe <sub>3</sub> . Nanoscale, 2020, 12, 9958-9963.                                                                                                                          | 5.6  | 11        |
| 166 | Fabrication of cubic Co3O4-hexagonal ZnO disk/rGO as a two-phase benzaldehyde sensor via a sequential nucleation strategy. Sensors and Actuators B: Chemical, 2021, 330, 129384.                                                                                                   | 7.8  | 11        |
| 167 | Energetic properties of copper azide nanoparticles encapsulated within a conductive porous matrix via electrosynthesis. Chemical Engineering Journal, 2022, 450, 138131.                                                                                                           | 12.7 | 11        |
| 168 | The facile synthesis of PbS cubes and Bi2S3 nanoflowers from molecular precursors at room temperature. Materials Letters, 2011, 65, 3344-3347.                                                                                                                                     | 2.6  | 10        |
| 169 | Enhanced electrochemical properties of pseudocapacitor with Bi3.64Mo0.36O6.55 NPs as electrodes.<br>Journal of Solid State Electrochemistry, 2017, 21, 403-408.                                                                                                                    | 2.5  | 10        |
| 170 | Grinding-assistant synthesis to basic bismuth nitrates and their photocatalytic properties. Materials<br>Science in Semiconductor Processing, 2019, 101, 183-190.                                                                                                                  | 4.0  | 10        |
| 171 | Rotated angular modulated electronic and optical properties of bilayer phosphorene: A<br>first-principles study. Applied Physics Letters, 2020, 117, .                                                                                                                             | 3.3  | 10        |
| 172 | One‣tep Synthesis of Bi <sub>2</sub> S <sub>3</sub> /BiOX and<br>Bi <sub>2</sub> S <sub>3</sub> /(BiO) <sub>2</sub> CO <sub>3</sub> Heterojunction Photocatalysts by<br>Using Aqueous Thiourea Solution as Both Solvent and Sulfur Source. ChemistrySelect, 2016, 1,<br>6136-6145. | 1.5  | 9         |
| 173 | Preparation of Copper-Embedded Graphene Nanocomposites for Catalytic Hydroxylation of Benzene to<br>Phenol. Current Organic Chemistry, 2015, 18, 3136-3140.                                                                                                                        | 1.6  | 9         |
| 174 | Particle-based hematite crystallization is invariant to initial particle morphology. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112679119.                                                                                      | 7.1  | 9         |
| 175 | A convenient method for preparing shape-controlled ZnO nanocrystals in a polyol/water mixture<br>system without surfactants. Journal Wuhan University of Technology, Materials Science Edition,<br>2009, 24, 30-33.                                                                | 1.0  | 8         |
| 176 | Dynamic electrosorption analysis: a viable liquid-phase characterization method for porous carbon?.<br>Journal of Materials Chemistry A, 2013, 1, 9332.                                                                                                                            | 10.3 | 8         |
| 177 | Ultrathin sheetlike BiOAc0.6710.33 solid solution with optimal energy levels and enhanced visible-light photocatalytic activity. Catalysis Communications, 2019, 119, 82-85.                                                                                                       | 3.3  | 8         |
| 178 | Synthesis of CdS multipods from cadmium xanthate in ethylenediamine solution. Particuology, 2015, 19, 45-52.                                                                                                                                                                       | 3.6  | 7         |
| 179 | Poly (triazine imide) ligand based 2D metal coordination polymers: Design, synthesis and application in electrocatalytic water oxidation. Electrochimica Acta, 2022, 401, 139463.                                                                                                  | 5.2  | 7         |
| 180 | Microwave selective heating ultrafast construction of coral-like TiO2-MXene /graphene hybrid<br>architectures for high-performance lithium-ion battery. Journal of Power Sources, 2022, 542, 231738.                                                                               | 7.8  | 7         |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid.<br>Mikrochimica Acta, 2021, 188, 18.                                                                                                          | 5.0 | 6         |
| 182 | Molecular Examination of Ion-Pair Competition in Alkaline Aluminate Solutions Using In Situ Liquid SIMS. Analytical Chemistry, 2021, 93, 1068-1075.                                                                                              | 6.5 | 6         |
| 183 | Sacrificial Template Synthesis of Two-Dimensional Few-Layer MoSe <sub>2</sub> Coupled with<br>Nitrogen-Doped Carbon Sheets for High-Performance Sodium Ion Hybrid Capacitors. ACS Applied<br>Energy Materials, 2021, 4, 14735-14745.             | 5.1 | 6         |
| 184 | Spontaneous growth of copper sulfide nanowires from elemental sulfur in carbon-coated Cu grids.<br>Materials Letters, 2009, 63, 2358-2360.                                                                                                       | 2.6 | 5         |
| 185 | Preparation and Characterization of Graphene Oxide-ZnO Nanocomposites. Materials Science Forum, 2011, 688, 228-232.                                                                                                                              | 0.3 | 4         |
| 186 | In situ assembly of Ag2O nanoparticles on low defect density carbon nanotubes. Materials Chemistry and Physics, 2012, 136, 666-672.                                                                                                              | 4.0 | 4         |
| 187 | Covalently Induced Grafting of C <sub>2</sub> N Nanoflakes onto Reduced Graphene Oxide with<br>Dominant Pseudocapacitive Behaviors for a High-Rate Sodium-Ion Battery Anode. ACS Sustainable<br>Chemistry and Engineering, 2021, 9, 15946-15956. | 6.7 | 4         |
| 188 | Gradient Supramolecular Preorganization Endows the Derived N/P Dual-Doped Carbon Nanosheets<br>with Tunable Storage Performance toward Sodium-Ion Batteries. Industrial & Engineering<br>Chemistry Research, 2022, 61, 6997-7008.                | 3.7 | 4         |
| 189 | Title is missing!. Journal of Materials Science Letters, 2003, 22, 931-933.                                                                                                                                                                      | 0.5 | 3         |
| 190 | Preparation and characterization of poly(dimethyldiallyl ammonium)chloride and antiglobulin tests for antibody detection. Journal of Applied Polymer Science, 2003, 87, 1957-1961.                                                               | 2.6 | 3         |
| 191 | Preparation of novel structural nanosized Y2O3 powders and their catalytic activity on the decomposition of NH4ClO4. Reaction Kinetics and Catalysis Letters, 2007, 92, 247-256.                                                                 | 0.6 | 3         |
| 192 | Self-assembly of (NH4)0.3TiO1.1F2.1 crystal by dinitrogen fixation as a precursor of N-doped TiO2 nanosheets. Journal of Nanoparticle Research, 2016, 18, 1.                                                                                     | 1.9 | 3         |
| 193 | Efficient Twoâ€Electron Oxygen Reduction to Hydrogen Peroxide Promoted by<br>Agâ€7,7,8,8â€Tetracyanoquinodimethane Nanodots/Graphene Hydrogel Hybrid Electrocatalysts.<br>ChemistrySelect, 2021, 6, 6450-6453.                                   | 1.5 | 3         |
| 194 | Synthesis of visible light responsive ultrafine K4Ce2Nb10O30 by a stearic acid method. Journal of Rare<br>Earths, 2009, 27, 811-814.                                                                                                             | 4.8 | 2         |
| 195 | The Influence of Chain Length and Structure of Xanthates on the Morphology of<br>Bi <sub>2</sub> S <sub>3</sub> Nanostructures. Nanoscience and Nanotechnology Letters, 2013, 5,<br>1030-1034.                                                   | 0.4 | 1         |
| 196 | A controllable synthetic route for preparing graphene-Cu and graphene-Cu2O nanocomposites using<br>graphene oxide-Cuo as a precursor. Journal Wuhan University of Technology, Materials Science<br>Edition, 2015, 30, 947-950.                   | 1.0 | 1         |
| 197 | Synthesis of CuO Nanocrystals in a Water-Isopropanol System. Advanced Materials Research, 2010, 148-149, 1011-1015.                                                                                                                              | 0.3 | 0         |
| 198 | Synthesis of rod-like ultrafine K4Ce2Nb10O30 via a salt-assistant stearic acid method. Journal of Rare<br>Earths, 2011, 29, 664-667.                                                                                                             | 4.8 | 0         |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | KLn <sub>2</sub> Ti <sub>3</sub> O <sub>9·5</sub> (Ln = La, Nd, Sm, Gd, Dy): new family of layered perovskite oxides. Advances in Applied Ceramics, 2014, 113, 189-192. | 1.1 | 0         |