
Craig D Kaplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993334/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription Elongation Factors Repress Transcription Initiation from Cryptic Sites. Science, 2003, 301, 1096-1099.	12.6	526
2	Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis. Cell, 2006, 127, 941-954.	28.9	421
3	Post-transcriptional Control of Cyclooxygenase-2 Gene Expression. Journal of Biological Chemistry, 2000, 275, 11750-11757.	3.4	314
4	Iron Acquisition and Transcriptional Regulation. Chemical Reviews, 2009, 109, 4536-4552.	47.7	248
5	The RNA Polymerase II Trigger Loop Functions in Substrate Selection and Is Directly Targeted by α-Amanitin. Molecular Cell, 2008, 30, 547-556.	9.7	239
6	Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes and Development, 2000, 14, 2623-2634.	5.9	204
7	The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature, 2016, 535, 444-447.	27.8	181
8	Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nature Genetics, 1995, 10, 89-93.	21.4	136
9	From Structure to Systems: High-Resolution, Quantitative Genetic Analysis of RNA Polymerase II. Cell, 2013, 154, 775-788.	28.9	132
10	Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6555-6560.	7.1	118
11	The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Molecular Cell, 2015, 58, 1113-1123.	9.7	108
12	Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Molecular Cell, 2015, 59, 258-269.	9.7	98
13	Dissection of Pol II Trigger Loop Function and Pol II Activity–Dependent Control of Start Site Selection In Vivo. PLoS Genetics, 2012, 8, e1002627.	3.5	93
14	Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle, 2009, 8, 2332-2338.	2.6	89
15	Interaction between Transcription Elongation Factors and mRNA 3′-End Formation at the Saccharomyces cerevisiae GAL10-GAL7 Locus. Journal of Biological Chemistry, 2005, 280, 913-922.	3.4	82
16	Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6642-6647.	7.1	68
17	High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. ELife, 2019, 8, .	6.0	63
18	Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI. Rna, 2007, 13, 1756-1764.	3.5	50

CRAIG D KAPLAN

#	Article	IF	CITATIONS
19	Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 39-54.	1.9	42
20	Uncoupling Promoter Opening from Start-Site Scanning. Molecular Cell, 2015, 59, 133-138.	9.7	37
21	Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae. Genome Biology, 2020, 21, 132.	8.8	35
22	Divergent Contributions of Conserved Active Site Residues to Transcription by Eukaryotic RNA Polymerases I and II. Cell Reports, 2013, 4, 974-984.	6.4	34
23	A Dual Interface Determines the Recognition of RNA Polymerase II by RNA Capping Enzyme*. Journal of Biological Chemistry, 2010, 285, 34027-34038.	3.4	29
24	Wide-ranging and unexpected consequences of altered Pol II catalytic activity <i>in vivo</i> . Nucleic Acids Research, 2017, 45, gkx037.	14.5	28
25	Organismal benefits of transcription speed control at gene boundaries. EMBO Reports, 2020, 21, e49315.	4.5	28
26	Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Transcription, 2014, 5, e28869.	3.1	26
27	High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. PLoS Genetics, 2016, 12, e1006321.	3.5	25
28	Cryo-EM structure of TFIIH/Rad4–Rad23–Rad33 in damaged DNA opening in nucleotide excision repair. Nature Communications, 2021, 12, 3338.	12.8	24
29	Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4816-4821.	7.1	23
30	A bridge to transcription by RNA polymerase. Journal of Biology, 2008, 7, 39.	2.7	18
31	Helicase activity is only partially required forSchizosaccharomyces pombe Rqh1p function. Yeast, 2002, 19, 1381-1398.	1.7	16
32	Competing for the Clamp: Promoting RNA Polymerase Processivity and Managing the Transition from Initiation to Elongation. Molecular Cell, 2011, 43, 161-163.	9.7	15
33	The architecture of RNA polymerase fidelity. BMC Biology, 2010, 8, 85.	3.8	13
34	Relationships of RNA Polymerase II Genetic Interactors to Transcription Start Site Usage Defects and Growth in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2015, 5, 21-33.	1.8	13
35	RNA Polymerase II Trigger Loop Mobility. Journal of Biological Chemistry, 2016, 291, 14883-14895.	3.4	11
36	Germline mutation in POLR2A: a heterogeneous, multi-systemic developmental disorder characterized by transcriptional dysregulation. Human Genetics and Genomics Advances, 2021, 2, 100014.	1.7	10

CRAIG D KAPLAN

#	Article	IF	CITATIONS
37	Functional assays for transcription mechanisms in high-throughput. Methods, 2019, 159-160, 115-123.	3.8	9
38	Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II. Molecular Cell, 2022, 82, 660-676.e9.	9.7	9
39	RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template. Rna, 2014, 20, 644-655.	3.5	8
40	Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution of Cell Size Values in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2019, 9, 239-250.	1.8	7
41	A genome-wide copper-sensitized screen identifies novel regulators of mitochondrial cytochrome c oxidase activity. Journal of Biological Chemistry, 2021, 296, 100485.	3.4	7
42	Pairs of promoter pairs in a web of transcription. Nature Genetics, 2016, 48, 975-976.	21.4	6
43	Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2016, 6, 2489-2504.	1.8	5
44	Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in Saccharomyces cerevisiae. ELife, 2021, 10, .	6.0	5
45	Revealing the hidden relationship between nucleosomes and splicing. Cell Cycle, 2009, 8, 3631-3635.	2.6	3
46	Specialized RSC: Substrate Specificities for a Conserved Chromatin Remodeler. BioEssays, 2020, 42, 2000002.	2.5	3
47	TFIIF and TFIIS Enhance the Mechanical Persistence of Transcript Elongation by RNA Polymerase II. Biophysical Journal, 2014, 106, 486a.	0.5	2
48	Regulatory oversight of the iron trade: Posttranscriptional regulation in yeast. Cell Metabolism, 2005, 2, 4-6.	16.2	1
49	Codon-Based Sequence Alignment for Mutation Analysis by High-Throughput Sequencing. , 2018, , .		0
50	A PICture is worth a thousand words (and ten references). Cell, 2021, 184, 3850-3851.	28.9	0
51	Structural basis of RNA polymerase II substrate specificity and catalysis. FASEB Journal, 2007, 21, A656.	0.5	0