Zemfira A Bredikhina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993309/publications.pdf

Version: 2024-02-01

56 papers

674 citations

16 h-index 23 g-index

58 all docs 58 docs citations

58 times ranked 418 citing authors

#	Article	IF	CITATIONS
1	Crystal Structure of Chiral Drug Prenalterol and Its Precursor Prone to Spontaneous Resolution. Symmetry, 2022, 14, 1150.	2.2	3
2	Chirality, Gelation Ability and Crystal Structure: Together or Apart? Alkyl Phenyl Ethers of Glycerol as Simple LMWGs. Symmetry, 2021, 13, 732.	2.2	4
3	Crystal Landscape of Chiral Drug Chlorphenesin and Its Structural Analogues: Polymorphism of Racemic and Enantiopure Samples, Metastable and Stable Racemic Conglomerates, Diverse in Unity Crystal Motifs. Crystal Growth and Design, 2021, 21, 3211-3224.	3.0	3
4	Chirality-dependent supramolecular synthons based on the 1,3-oxazolidin-2-one framework: chiral drugs mephenoxalone, metaxalone and 114 other examples. CrystEngComm, 2020, 22, 7252-7261.	2.6	8
5	Stereoselective Crystallization of Chiral 3,4-Dimethylphenyl Glycerol Ether Complicated by Plurality of Crystalline Modifications. Crystals, 2020, 10, 201.	2.2	5
6	Effective synthesis of non-racemic prenalterol based on spontaneous resolution of 3-(4-hydroxyphenoxy)propane-1,2-diol. Mendeleev Communications, 2019, 29, 198-199.	1.6	2
7	Solid Phase Behavior, Polymorphism, and Crystal Structure Features of Chiral Drug Metaxalone. Crystal Growth and Design, 2018, 18, 6627-6639.	3.0	11
8	Synthesis, phase behavior and absolute configuration of \hat{l}^2 -adrenoblocker bupranolol and related compounds. Journal of Molecular Structure, 2018, 1173, 157-165.	3.6	3
9	Crystallization of Chiral <i>paran</i> <ia>Alkylphenyl Glycerol Ethers: Phase Diversity and Impressive Predominance of Homochiral Guaifenesin-Like Supramolecular Motif. Crystal Growth and Design, 2018, 18, 3980-3987.</ia>	3.0	9
10	Synthesis and crystal structure of (S)-pindolol. Tetrahedron: Asymmetry, 2017, 28, 442-446.	1.8	4
11	Stereoselective Crystallization as a Basis for Singleâ€Enantiomer Drug Production. Chemical Engineering and Technology, 2017, 40, 1211-1220.	1.5	24
12	Intricate Phase Behavior and Crystal Structure Features of Chiral <i>para</i> -Methoxyphenyl Glycerol Ether Forming Continuous and Partial Solid Solutions. Crystal Growth and Design, 2017, 17, 271-283.	3.0	22
13	Crystallization features and spontaneous resolution of 3-(2,6-dimethoxyphenoxy)propane-1,2-diol: The case of stable conglomerate and metastable solid solution. Journal of Molecular Structure, 2017, 1144, 443-450.	3.6	2
14	Synthesis, crystal structure, and absolute configuration of the enantiomers of chiral drug xibenolol hydrochloride. Tetrahedron: Asymmetry, 2017, 28, 1359-1366.	1.8	4
15	Spontaneous Resolution of Chiral 3-(2,3-Dimethylphenoxy)propane-1,2-diol under the Circumstances of an Unusual Diversity of Racemic Crystalline Modifications. Crystal Growth and Design, 2017, 17, 4196-4206.	3.0	8
16	Synthesis of all of the stereoisomers of \hat{l}^2 3-adrenoceptor antagonist SR 59230 based on the spontaneous resolution of 3-(2-ethylphenoxy)propane-1,2-diol. Tetrahedron: Asymmetry, 2016, 27, 467-474.	1.8	5
17	The effective direct resolution procedure for the chiral drug bevantolol hydrochloride. Tetrahedron: Asymmetry, 2016, 27, 397-403.	1.8	2
18	New example of spontaneous resolution among aryl glycerol ethers: 3-(2,6-dichlorophenoxy)propane-1,2-diol. Journal of Molecular Structure, 2016, 1118, 172-178.	3.6	1

#	Article	IF	Citations
19	Conglomerate formative precursor of chiral drug timolol: 3-(4-Morpholino-1,2,5-thiadiazol-3-yloxy)-propane-1,2-diol. Journal of Molecular Structure, 2015, 1088, 111-117.	3.6	10
20	4-Benzoylamino-3-hydroxybutyric Acid, Historically First "Anomalous Racemate― Reinvestigation. Crystal Growth and Design, 2015, 15, 1362-1373.	3.0	5
21	From racemic epichlorohydrin to a single enantiomer of the drug timolol maleate. Tetrahedron: Asymmetry, 2015, 26, 797-801.	1.8	4
22	Stereoselective crystallization of 3-(2,6-dimethylphenoxy)propane-1,2-diol: preparation of the single-enantiomer drug mexiletine. Tetrahedron: Asymmetry, 2015, 26, 577-583.	1.8	16
23	Crystal structure of chiral ortho-alkyl phenyl ethers of glycerol: true racemic compound, normal, false and anomalous conglomerates within the single five-membered family. CrystEngComm, 2014, 16, 6716.	2.6	23
24	A rare case of facial selectivity inversion for Sharpless asymmetric dihydroxylation in a series of structurally homogeneous substrates: synthesis of non-racemic 3-(nitrophenoxy)-propane-1,2-diols. Tetrahedron: Asymmetry, 2014, 25, 1015-1021.	1.8	8
25	Solubility and Some Crystallization Properties of Conglomerate Forming Chiral Drug Guaifenesin in Water. Journal of Pharmaceutical Sciences, 2014, 103, 3176-3182.	3.3	14
26	Lariat ethers in the chiral recognition of amino acid esters:electrospray ionization mass spectrometry investigation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 417-426.	1.6	5
27	Crystallization Features of the Chiral Drug Timolol Precursor: The Rare Case of Conglomerate with Partial Solid Solutions. Crystal Growth and Design, 2014, 14, 1676-1683.	3.0	29
28	Phase behavior and crystal structure of 3-(1-naphthyloxy)- and 3-(4-indolyloxy)-propane-1,2-diol, synthetic precursors of chiral drugs propranolol and pindolol. Journal of Molecular Structure, 2013, 1045, 104-111.	3.6	7
29	Chiral para-alkyl phenyl ethers of glycerol: synthesis and testing of chirality driven crystallization, liquid crystal, and gelating properties. Tetrahedron: Asymmetry, 2013, 24, 807-816.	1.8	29
30	Crystallographic evidence of side-arm lariat effect in the series of chiral ortho- and para-methoxyphenoxymethyl-15-crown-5 complexes with sodium perchlorate. Journal of Molecular Structure, 2013, 1032, 176-184.	3.6	12
31	Crystal structure and phase behavior of the tolyl glycerol ethers. From the conglomerate former to the chirality-driven nanogelator. CrystEngComm, 2012, 14, 211-222.	2.6	20
32	Crystallization of chiral compounds: thermodynamical, structural and practical aspects. Mendeleev Communications, 2012, 22, 171-180.	1.6	42
33	Chiral drugtimolol maleate as a continuous solid solution: Thermochemical and single crystal X-ray evidence. CrystEngComm, 2012, 14, 648-655.	2.6	35
34	Liesegang ring formation during the supramolecular hydrogelation of the chiral drug methocarbamol. Mendeleev Communications, 2011, 21, 144-145.	1.6	9
35	Synthesis and extraction properties of some lariat ethers derived from the spontaneously resolved guaifenesin, 3-(2-methoxyphenoxy)propane-1,2-diol. Arkivoc, 2011, 2011, 16-32.	0.5	6
36	Absolute configuration and crystal packing chirality for three conglomerate-forming ortho-halogen substituted phenyl glycerol ethers. Journal of Molecular Structure, 2010, 975, 323-329.	3.6	11

#	Article	IF	CITATIONS
37	Chirality driven crystallization behavior of ortho, meta, and para-cyanophenyl glycerol ethers. Journal of Molecular Structure, 2010, 981, 163-172.	3.6	3
38	Synthesis and solid state properties of the 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, cyclic sulfate not available through sulfite oxidation procedure. Journal of Molecular Structure, 2010, 984, 339-343.	3 . 6	0
39	p-Tolyl glycerol ether: is it possible to find more simple molecular organogelator with pronounced chirality driven properties?. Chemical Communications, 2010, 46, 3523.	4.1	21
40	Racemic compound against racemic conglomerate formation: The crystal properties of allylbenzylmethylphenylphosphonium iodide as compared with the nitrogen analogue. Chirality, 2009, 21, 637-641.	2.6	4
41	From racemic compounds through metastable to stable racemic conglomerates: crystallization features of chiral halogen and cyano monosubstituted phenyl glycerol ethers. Tetrahedron: Asymmetry, 2009, 20, 2130-2136.	1.8	20
42	Absolute configuration and crystal packing for three chiral drugs prone to spontaneous resolution: Guaifenesin, methocarbamol and mephenesin. Journal of Molecular Structure, 2009, 920, 377-382.	3.6	31
43	New example of spontaneous resolution among aryl glycerol ethers: 3-(2-hydroxyphenoxy)propane-1,2-diol. Mendeleev Communications, 2009, 19, 208-210.	1.6	3
44	One more chiral drug prone to spontaneous resolution: Binary phase diagram, absolute configuration, and crystal packing of bevantolol hydrochloride. Journal of Molecular Structure, 2009, 936, 171-176.	3 . 6	7
45	First examples of the cocrystallization of diastereomers of chiral phosphorus compounds. Structural Chemistry, 2008, 19, 873-878.	2.0	8
46	Three different types of chiralityâ€driven crystallization within the series of uniformly substituted phenyl glycerol ethers. Chirality, 2008, 20, 1092-1103.	2.6	29
47	Spontaneous resolution amongst chiral ortho-cyanophenyl glycerol derivatives: an effective preferential crystallization approach to a single enantiomer of the \hat{l}^2 -adrenoblocker bunitrolol. Tetrahedron: Asymmetry, 2008, 19, 1430-1435.	1.8	13
48	Chiral drugs related to guaifenesin: synthesis and phase properties of methocarbamol and mephenoxalone. Tetrahedron: Asymmetry, 2007, 18, 1239-1244.	1.8	26
49	Spontaneous resolution among chiral glycerol derivatives: crystallization features of ortho-alkoxysubstituted phenyl glycerol ethers. Tetrahedron: Asymmetry, 2007, 18, 1964-1970.	1.8	16
50	Solid state properties and effective resolution procedure for guaifenesin, 3-(2-methoxyphenoxy)-1,2-propanediol. Tetrahedron: Asymmetry, 2006, 17, 3015-3020.	1.8	24
51	Solid-state properties of 1,2-epoxy-3-(2-cyanophenoxy)propane, a conglomerate-forming chiral drug precursor. Mendeleev Communications, 2006, 16, 245-247.	1.6	6
52	Solid state properties of 1,2-epoxy-3-(2-methoxyphenyloxy)-propaneâ€"valuable intermediate in non-racemic drug synthesis. Tetrahedron: Asymmetry, 2005, 16, 3361-3366.	1.8	11
53	Rational approach to a conglomerate-forming propranolol derivative: pointed modifications of the crystal structure. Mendeleev Communications, 2004, 14, 268-270.	1.6	10
54	Systematic search for conglomerates among glycerol aromatic monoethers: guaifenesin and mephenesin are the cases. Mendeleev Communications, 2003, 13, 104-105.	1.6	20

#	Article	IF	CITATIONS
55	Cyclic (4S)-chloromethyl sulfite and sulfate derivatives of (S)-glycidol as valuable synthetic equivalents of scalemic epichlorohydrin. Mendeleev Communications, 1999, 9, 236-237.	1.6	8
56	SOME NEW ASPECTS OF GLYCIDOL PHOSPHORYLATION BY PCI3. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 131, 173-182.	1.6	9