
Jing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993169/publications.pdf Version: 2024-02-01

ΙΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	How does pH influence ferrate(VI) oxidation of fluoroquinolone antibiotics?. Chemical Engineering Journal, 2022, 431, 133381.	6.6	6
2	Efficient reductive and oxidative decomposition of haloacetic acids by the vacuum-ultraviolet/sulfite system. Water Research, 2022, 210, 117974.	5.3	29
3	Enhanced ferrate oxidation of organic pollutants in the presence of Cu(II) Ion. Journal of Hazardous Materials, 2022, 433, 128772.	6.5	23
4	Reinvestigation of Ferrate(VI) Oxidation of Bisphenol A over a Wide pH Range. ACS ES&T Water, 2022, 2, 156-164.	2.3	10
5	Abatement of Organic Contaminants by Mn(VII)/TEMPOs: Effects of TEMPOs Structure, Organic Contaminant Speciation, and Active Oxidizing Species. Environmental Science & Technology, 2022, 56, 10361-10371.	4.6	9
6	Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chemistry, 2021, 23, 1114-1129.	4.6	46
7	Role of TEMPO in Enhancing Permanganate Oxidation toward Organic Contaminants. Environmental Science & Technology, 2021, 55, 7681-7689.	4.6	29
8	Role of weak magnetic field for enhanced oxidation of orange G by magnetic Fenton. Environmental Science and Pollution Research, 2021, 28, 59834-59843.	2.7	5
9	Reducing substances-enhanced degradation of pollutants by permanganate: The role of in situ formed colloidal MnO2. Chemosphere, 2021, 276, 130203.	4.2	22
10	Rapid degradation of norfloxacin by VUV/Fe2+/H2O2 over a wide initial pH: Process parameters, synergistic mechanism, and influencing factors. Journal of Hazardous Materials, 2021, 416, 125893.	6.5	10
11	Sulfite activation by Fe-doped g-C3N4 for metronidazole degradation. Separation and Purification Technology, 2021, 272, 118928.	3.9	42
12	Degradation difference of fluoroquinolones by vacuum ultraviolet (VUV) and VUV/Fe2+ processes: Performance, mechanism, and influencing factors. Chemical Engineering Journal, 2021, 424, 130555.	6.6	15
13	Enhanced abatement of pharmaceuticals by permanganate via the addition of Co3O4 nanoparticles. Chemosphere, 2021, 282, 131115.	4.2	11
14	CuO@NiO Nanoparticles Derived from Metal–Organic Framework Precursors for the Deoxygenation of Fatty Acids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15612-15622.	3.2	13
15	Enhanced peroxymonosulfate activation by coupling zeolite-supported nano-zero-valent iron with weak magnetic field. Separation and Purification Technology, 2020, 230, 115886.	3.9	32
16	Enhanced Transformation of Emerging Contaminants by Permanganate in the Presence of Redox Mediators. Environmental Science & Technology, 2020, 54, 1909-1919.	4.6	42
17	Ferrate Oxidation of Phenolic Compounds in Iodine-Containing Water: Control of Iodinated Aromatic Products. Environmental Science & Technology, 2020, 54, 1827-1836.	4.6	32
18	CuNiN@C coupled with peroxymonosulfate as efficient catalytic system for the removal of norfloxacin by adsorption and catalysis. Separation and Purification Technology, 2020, 252, 117476.	3.9	25

Jing Zhang

#	Article	IF	CITATIONS
19	Catalytic Hydrothermal Decarboxylation and Cracking of Fatty Acids and Lipids over Ru/C. ACS Sustainable Chemistry and Engineering, 2019, 7, 14400-14410.	3.2	58
20	Generation of Active Mn(III) _{aq} by a Novel Heterogeneous Electro-permanganate Process with Manganese(II) as Promoter and Stabilizer. Environmental Science & Technology, 2019, 53, 9063-9072.	4.6	57
21	Visible-light photocatalysis accelerates As(III) release and oxidation from arsenic-containing sludge. Applied Catalysis B: Environmental, 2019, 250, 1-9.	10.8	43
22	Insight into mechanism of arsanilic acid degradation in permanganate-sulfite system: Role of reactive species. Chemical Engineering Journal, 2019, 359, 1463-1471.	6.6	49
23	Role of oxalate in permanganate oxidation of 4-chlorophenol. Chemosphere, 2018, 203, 117-122.	4.2	10
24	Chemical oxidation of benzene and trichloroethylene by a combination of peroxymonosulfate and permanganate linked by in-situ generated colloidal/amorphous MnO2. Chemical Engineering Journal, 2017, 313, 815-825.	6.6	58
25	Efficient activation of ozone by zero-valent copper for the degradation of aniline in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 335-342.	2.7	37
26	Rapid removal of organic pollutants by activation sulfite with ferrate. Chemosphere, 2017, 186, 576-579.	4.2	74
27	Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: role of hydroxylamine. RSC Advances, 2016, 6, 47562-47569.	1.7	41
28	Activation of persulfate by Co ₃ O ₄ nanoparticles for orange G degradation. RSC Advances, 2016, 6, 758-768.	1.7	101
29	Ruthenium hydroxide supported on activated alumina for catalytic permanganate oxidation of aniline. Desalination and Water Treatment, 2016, 57, 17355-17366.	1.0	0
30	Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles. Chemosphere, 2015, 141, 154-161.	4.2	12
31	Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies. Frontiers of Environmental Science and Engineering, 2015, 9, 16-38.	3.3	41
32	Ru(III)-catalyzed permanganate oxidation of bisphenol A. Desalination and Water Treatment, 2014, 52, 4592-4601.	1.0	16
33	Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH. Journal of Environmental Sciences, 2014, 26, 1395-1402.	3.2	18
34	Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation. Water Research, 2014, 63, 262-270.	5.3	56
35	Activating persulfate by FeO coupling with weak magnetic field: Performance and mechanism. Water Research, 2014, 62, 53-62.	5.3	152
36	Ruthenium Nanoparticles Supported on CeO ₂ for Catalytic Permanganate Oxidation of Butylparaben. Environmental Science & Technology, 2013, 47, 13011-13019.	4.6	61

Jing Zhang

#	Article	IF	CITATIONS
37	Oxidative removal of bisphenol A by permanganate: Kinetics, pathways and influences of co-existing chemicals. Separation and Purification Technology, 2013, 107, 48-53.	3.9	112
38	Reinvestigation of the Role of Humic Acid in the Oxidation of Phenols by Permanganate. Environmental Science & Technology, 2013, 47, 14332-14340.	4.6	99
39	Parabola-Like Shaped pH-Rate Profile for Phenols Oxidation by Aqueous Permanganate. Environmental Science & Technology, 2012, 46, 8860-8867.	4.6	89
40	Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles. Environmental Science & Technology, 2011, 45, 3925-3930.	4.6	402