Braden C Mcfarland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5992978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glioma and the gut–brain axis: opportunities and future perspectives. Neuro-Oncology Advances, 2022, 4, vdac054.	0.4	10
2	Human gut microbial communities dictate efficacy of anti-PD-1 therapy in a humanized microbiome mouse model of glioma. Neuro-Oncology Advances, 2021, 3, vdab023.	0.4	10
3	Changes in the gut microbiome community of nonhuman primates following radiation injury. BMC Microbiology, 2021, 21, 93.	1.3	35
4	An individualized mosaic of maternal microbial strains is transmitted to the infant gut microbial community. Royal Society Open Science, 2020, 7, 192200.	1.1	24
5	Reactive astrocytes foster brain metastases via STAT3 signaling. Annals of Translational Medicine, 2019, 7, S83-S83.	0.7	10
6	Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. Journal of Neuro-Oncology, 2017, 132, 219-229.	1.4	24
7	Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological Responses. Journal of Biological Chemistry, 2016, 291, 15830-15840.	1.6	68
8	Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma. Oncotarget, 2016, 7, 20621-20635.	0.8	23
9	Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma. Oncotarget, 2015, 6, 17805-17816.	0.8	43
10	TMIC-17LOSS OF SOCS3 IN MYELOID CELLS PROMOTES A DECREASED M2 MACROPHAGE PHENOTYPE AND AN INCREASED CYTOTOXIC T-CELL RESPONSE IN A SYNGENEIC MODEL OF GLIOMA. Neuro-Oncology, 2015, 17, v218.5-v218.	0.6	0
11	SOCS3 Deficiency in Myeloid Cells Promotes Tumor Development: Involvement of STAT3 Activation and Myeloid-Derived Suppressor Cells. Cancer Immunology Research, 2015, 3, 727-740.	1.6	54
12	Protein Kinase CK2 and Dysregulated Oncogenic Inflammatory Signaling Pathways. , 2015, , 259-280.		2
13	Abstract A25: SOCS3 deficiency in myeloid cells promotes prostate tumor development. , 2015, , .		0
14	Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2014, 192, 59-72.	0.4	122
15	NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Review of Neurotherapeutics, 2014, 14, 1293-1306.	1.4	89
16	Involvement of the Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway in Multiple Sclerosis and the Animal Model of Experimental Autoimmune Encephalomyelitis. Journal of Interferon and Cytokine Research, 2014, 34, 577-588.	0.5	85
17	Therapeutic CK2 inhibition attenuates diverse prosurvival signaling cascades and decreases cell viability in human breast cancer cells. Oncotarget, 2014, 5, 6484-6496.	0.8	68
18	Targeting Protein Kinase CK2 Suppresses Prosurvival Signaling Pathways and Growth of Glioblastoma. Clinical Cancer Research, 2013, 19, 6484-6494.	3.2	124

BRADEN C MCFARLAND

#	Article	IF	CITATIONS
19	Activation of the NF-κB Pathway by the STAT3 Inhibitor JSI-124 in Human Glioblastoma Cells. Molecular Cancer Research, 2013, 11, 494-505.	1.5	51
20	NF-κB-Induced IL-6 Ensures STAT3 Activation and Tumor Aggressiveness in Glioblastoma. PLoS ONE, 2013, 8, e78728.	1.1	118
21	The role of Rac proteins in glioblastoma stem cells Journal of Clinical Oncology, 2013, 31, e13011-e13011.	0.8	0
22	Therapeutic Potential of AZD1480 for the Treatment of Human Glioblastoma. Molecular Cancer Therapeutics, 2011, 10, 2384-2393.	1.9	81
23	Plasminogen Kringle 5 Induces Apoptosis of Brain Microvessel Endothelial Cells: Sensitization by Radiation and Requirement for GRP78 and LRP1. Cancer Research, 2009, 69, 5537-5545.	0.4	46
24	New molecular targets in angiogenic vessels of glioblastoma tumours. Expert Reviews in Molecular Medicine, 2008, 10, e23.	1.6	62
25	HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene, 2006, 25, 1721-1732.	2.6	173
26	New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. Journal of Cellular Biochemistry, 2006, 99, 35-52.	1.2	254