
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/599295/publications.pdf Version: 2024-02-01

ΔΝΛ ΤΡΛΥΕΝ

#	Article	IF	CITATIONS
1	PUF proteins: repression, activation and mRNA localization. Trends in Cell Biology, 2011, 21, 104-112.	3.6	263
2	Mitochondria and Fungal Pathogenesis: Drug Tolerance, Virulence, and Potential for Antifungal Therapy. Eukaryotic Cell, 2011, 10, 1376-1383.	3.4	198
3	Interorganellar Communication. Journal of Biological Chemistry, 2001, 276, 4020-4027.	1.6	190
4	SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. BioEssays, 2005, 27, 397-407.	1.2	182
5	The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages. MBio, 2014, 5, e00003-14.	1.8	181
6	Guanylated Polymethacrylates: A Class of Potent Antimicrobial Polymers with Low Hemolytic Activity. Biomacromolecules, 2013, 14, 4021-4031.	2.6	174
7	Yeast Gal4: a transcriptional paradigm revisited. EMBO Reports, 2006, 7, 496-499.	2.0	163
8	Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metabolism, 2018, 27, 988-1006.e7.	7.2	162
9	A Global Virulence Regulator in Acinetobacter baumannii and Its Control of the Phenylacetic Acid Catabolic Pathway. Journal of Infectious Diseases, 2014, 210, 46-55.	1.9	139
10	Cell wall integrity is linked to mitochondria and phospholipid homeostasis in <i>Candida albicans</i> through the activity of the postâ€ŧranscriptional regulator Ccr4â€₽op2. Molecular Microbiology, 2011, 79, 968-989.	1.2	115
11	Identification and Mechanism of Action of the Plant Defensin NaD1 as a New Member of the Antifungal Drug Arsenal against Candida albicans. Antimicrobial Agents and Chemotherapy, 2013, 57, 3667-3675.	1.4	104
12	System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Research, 2015, 15, fov027.	1.1	93
13	ePAT: A simple method to tag adenylated RNA to measure poly(A)-tail length and other 3′ RACE applications. Rna, 2012, 18, 1289-1295.	1.6	87
14	Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Molecular Cell, 2015, 59, 309-320.	4.5	79
15	PAT-seq: a method to study the integration of 3′-UTR dynamics with gene expression in the eukaryotic transcriptome. Rna, 2015, 21, 1502-1510.	1.6	78
16	Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins. Cellular and Molecular Life Sciences, 2014, 71, 2651-2666.	2.4	76
17	RAFT-derived antimicrobial polymethacrylates: elucidating the impact of end-groups on activity and cytotoxicity. Polymer Chemistry, 2014, 5, 5813-5822.	1.9	68
18	Searching for new strategies against polymicrobial biofilm infections: guanylated polymethacrylates kill mixed fungal/bacterial biofilms. Journal of Antimicrobial Chemotherapy, 2016, 71, 413-421.	1.3	65

#	Article	IF	CITATIONS
19	Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence. Eukaryotic Cell, 2012, 11, 532-544.	3.4	57
20	Patterns that Define the Four Domains Conserved in Known and Novel Isoforms of the Protein Import Receptor Tom20. Journal of Molecular Biology, 2005, 347, 81-93.	2.0	53
21	The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression. PLoS Genetics, 2012, 8, e1002613.	1.5	50
22	Ccr4-Not Complex mRNA Deadenylase Activity Contributes to DNA Damage Responses in Saccharomyces cerevisiae. Genetics, 2005, 169, 65-75.	1.2	47
23	Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Reports, 2019, 20, e47995.	2.0	47
24	Anti-infective Surface Coatings: Design and Therapeutic Promise against Device-Associated Infections. PLoS Pathogens, 2016, 12, e1005598.	2.1	43
25	The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. MSphere, 2016, 1, .	1.3	39
26	A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling. Cell Reports, 2018, 25, 2244-2258.e7.	2.9	37
27	Phospholipase C of Cryptococcus neoformans Regulates Homeostasis and Virulence by Providing Inositol Trisphosphate as a Substrate for Arg1 Kinase. Infection and Immunity, 2013, 81, 1245-1255.	1.0	36
28	The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization. Frontiers in Microbiology, 2017, 8, 2295.	1.5	36
29	Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities. PLoS ONE, 2012, 7, e46243.	1.1	34
30	<i>ifet-1</i> is a broad scale translational repressor required for normal P granule formation in <i>C. elegans</i> . Journal of Cell Science, 2013, 126, 850-9.	1.2	32
31	Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans. PLoS Genetics, 2015, 11, e1005590.	1.5	31
32	Surface coatings with covalently attached caspofungin are effective in eliminating fungal pathogens. Journal of Materials Chemistry B, 2015, 3, 8469-8476.	2.9	31
33	A model system for mitochondrial biogenesis reveals evolutionary rewiring of protein import and membrane assembly pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3358-66.	3.3	30
34	Metabolic competition between host and pathogen dictates inflammasome responses to fungal infection. PLoS Pathogens, 2020, 16, e1008695.	2.1	28
35	Bovine pancreatic trypsin inhibitor is a new antifungal peptide that inhibits cellular magnesium uptake. Molecular Microbiology, 2014, 92, 1188-1197.	1.2	25
36	Mitochondrial Biogenesis: Cell-Cycle-Dependent Investment inÂMaking Mitochondria. Current Biology, 2015, 25, R78-R80.	1.8	24

#	Article	IF	CITATIONS
37	The Ccr4-Pop2-NOT mRNA Deadenylase Contributes to Septin Organization in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 182, 955-966.	1.2	23
38	The cellular roles of Ccr4-NOT in model and pathogenic fungi—implications for fungal virulence. Frontiers in Genetics, 2013, 4, 302.	1.1	23
39	Immunometabolism in fungal infections: the need to eat to compete. Current Opinion in Microbiology, 2020, 58, 32-40.	2.3	23
40	A Small Tim Homohexamer in the Relict Mitochondrion of Cryptosporidium. Molecular Biology and Evolution, 2012, 29, 113-122.	3.5	22
41	Postâ€transcriptional gene regulation in the biology and virulence of <i>Candida albicans</i> . Cellular Microbiology, 2016, 18, 800-806.	1.1	22
42	Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens. Current Topics in Microbiology and Immunology, 2019, 425, 277-296.	0.7	20
43	Microbial Egress: A Hitchhiker's Guide to Freedom. PLoS Pathogens, 2014, 10, e1004201.	2.1	19
44	The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Reports, 2020, 31, 107528.	2.9	19
45	Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. Journal of Leukocyte Biology, 2020, 108, 967-981.	1.5	19
46	The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Frontiers in Microbiology, 2017, 8, 2555.	1.5	15
47	Mdivi-1 and mitochondrial fission: recent insights from fungal pathogens. Current Genetics, 2019, 65, 837-845.	0.8	14
48	The ins and outs of the intermembrane space: Diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1246-1253.	1.1	12
49	Natural Variation in Clinical Isolates of Candida albicans Modulates Neutrophil Responses. MSphere, 2020, 5, .	1.3	12
50	Characterization of Key Bio–Nano Interactions between Organosilica Nanoparticles and <i>Candida albicans</i> . ACS Applied Materials & Interfaces, 2019, 11, 34676-34687.	4.0	11
51	The Yeast PUF Protein Puf5 Has Pop2-Independent Roles in Response to DNA Replication Stress. PLoS ONE, 2010, 5, e10651.	1.1	11
52	Protein hijacking. Cancer Cell, 2004, 5, 107-108.	7.7	10
53	Disruption of Iron Homeostasis and Mitochondrial Metabolism Are Promising Targets to Inhibit Candida auris. Microbiology Spectrum, 2022, 10, e0010022.	1.2	9
54	The mRNA Decay Pathway Regulates the Expression of the Flo11 Adhesin and Biofilm Formation in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 191, 1387-1391.	1.2	8

#	Article	IF	CITATIONS
55	The RSC (Remodels the Structure of Chromatin) complex of Candida albicans shows compositional divergence with distinct roles in regulating pathogenic traits. PLoS Genetics, 2020, 16, e1009071.	1.5	8
56	Dual functions of Mdt1 in genome maintenance and cell integrity pathways in <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 41-52.	0.8	7
57	The Retinoblastoma Family of Proteins Directly Represses Transcription in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 8797-8801.	1.6	5
58	The yeast protein Xtc1 functions as a direct transcriptional repressor. Nucleic Acids Research, 2002, 30, 2358-2364.	6.5	4
59	Solvent-exposed serines in the Gal4 DNA-binding domain are required for promoter occupancy and transcriptional activation <i>in vivo</i> . FEMS Yeast Research, 2014, 14, 302-309.	1.1	3
60	Mitochondrial dysfunction enhances Gal4-dependent transcription. FEMS Microbiology Letters, 2005, 253, 207-213.	0.7	2
61	Preparation of Mitochondria from Candida albicans. Bio-protocol, 2013, 3, .	0.2	1
62	Candida albicans Mitochondrial Protein Import Assay. Bio-protocol, 2013, 3, .	0.2	1
63	Candida and macrophages: a deadly affair. Microbiology Australia, 2015, 36, 53.	0.1	0
64	Probing connectivity between transcriptional and post-transcriptional gene networks. Microbiology Australia, 2011, 32, 166.	0.1	0