Haruka Minato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/599293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The deformation of hydrogel microspheres at the air/water interface. Chemical Communications, 2018, 54, 932-935.	4.1	53
2	Self-Organization of Soft Hydrogel Microspheres during the Evaporation of Aqueous Droplets. Langmuir, 2018, 34, 4515-4525.	3.5	33
3	Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Freeâ€Radicalâ€Seeded Emulsion Polymerization. Angewandte Chemie - International Edition, 2020, 59, 8849-8853.	13.8	21
4	Concentration dependence of the dynamics of microgel suspensions investigated by dynamic light scattering. Soft Matter, 2019, 15, 5390-5399.	2.7	17
5	Nanostructures, Thermoresponsiveness, and Assembly Mechanism of Hydrogel Microspheres during Aqueous Free-Radical Precipitation Polymerization. Langmuir, 2021, 37, 151-159.	3.5	17
6	Effect of Charge Groups Immobilized in Hydrogel Microspheres during the Evaporation of Aqueous Sessile Droplets. Langmuir, 2019, 35, 10412-10423.	3.5	15
7	The Belousov–Zhabotinsky Reaction in Thermoresponsive Core–Shell Hydrogel Microspheres with a Tris(2,2′-bipyridyl)ruthenium Catalyst in the Core. Journal of Physical Chemistry B, 2020, 124, 3828-3835.	2.6	13
8	Protein uptake into individual hydrogel microspheres visualized by high-speed atomic force microscopy. Chemical Communications, 2019, 55, 10064-10067.	4.1	11
9	High-Frequency Swelling/Deswelling Oscillation of Poly(Oligoethylene Glycol) Methacrylate-Based Hydrogel Microspheres with a Tris(2,2′-bipyridyl)ruthenium Catalyst. ACS Applied Polymer Materials, 2021, 3, 3298-3306.	4.4	8
10	Thermoresponsive structural changes of single poly(N-isopropyl acrylamide) hydrogel microspheres under densely packed conditions on a solid substrate. Polymer Journal, 2020, 52, 1137-1141.	2.7	7
11	Temperature-dependent relationship between the structure and mechanical strength of volatile organic compound-free latex films prepared from poly(butyl acrylate-co-methyl methacrylate) microspheres. Polymer Journal, 2021, 53, 345-353.	2.7	5
12	Non-close-packed arrangement of soft elastomer microspheres on solid substrates. RSC Advances, 2021, 11, 14562-14567.	3.6	4
13	Two-step yielding behavior of densely packed microgel mixtures with chemically dissimilar surfaces and largely different sizes. Soft Matter, 2020, 16, 7400-7413.	2.7	3
14	Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Freeâ€Radicalâ€Seeded Emulsion Polymerization. Angewandte Chemie, 2020, 132, 8934-8938.	2.0	3
15	Nanostructure and thermoresponsiveness of poly(<i>N</i> -isopropyl methacrylamide)-based hydrogel microspheres prepared <i>via</i> aqueous free radical precipitation polymerization. RSC Advances, 2021, 11, 13130-13137.	3.6	3
16	Titelbild: Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Freeâ€Radicalâ€6eeded Emulsion Polymerization (Angew. Chem. 23/2020). Angewandte Chemie, 2020, 132, 8809-8809.	2.0	0
17	Evaluation of Deformation Characteristics of Micron-Size Hydrogel Particles with Strain Recovery Processes. Nihon Reoroji Gakkaishi, 2018, 46, 227-231.	1.0	0