
Jonathan Arzt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5992894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. Journal of Virology, 2015, 89, 6048-6056.	1.5	234
2	The Pathogenesis of Foot-and-Mouth Disease I: Viral Pathways in Cattle. Transboundary and Emerging Diseases, 2011, 58, 291-304.	1.3	169
3	The Pathogenesis of Foot-and-Mouth Disease II: Viral Pathways in Swine, Small Ruminants, and Wildlife; Myotropism, Chronic Syndromes, and Molecular Virus-Host Interactions. Transboundary and Emerging Diseases, 2011, 58, 305-326.	1.3	147
4	African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene <i>9GL</i> (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge. Journal of Virology, 2015, 89, 8556-8566.	1.5	141
5	The Early Pathogenesis of Foot-and-Mouth Disease in Cattle After Aerosol Inoculation. Veterinary Pathology, 2010, 47, 1048-1063.	0.8	134
6	The Progressive Adaptation of a Georgian Isolate of African Swine Fever Virus to Vero Cells Leads to a Gradual Attenuation of Virulence in Swine Corresponding to Major Modifications of the Viral Genome. Journal of Virology, 2015, 89, 2324-2332.	1.5	125
7	Early events in the pathogenesis of foot-and-mouth disease in cattle after controlled aerosol exposure. Veterinary Journal, 2010, 183, 46-53.	0.6	114
8	Agricultural Diseases on the Move Early in the Third Millennium. Veterinary Pathology, 2010, 47, 15-27.	0.8	97
9	The Foot-and-Mouth Disease Carrier State Divergence in Cattle. Journal of Virology, 2016, 90, 6344-6364.	1.5	96
10	Foot-and-mouth disease vaccines. Veterinary Microbiology, 2017, 206, 102-112.	0.8	95
11	Veterinary applications of infrared thermography. American Journal of Veterinary Research, 2016, 77, 98-107.	0.3	70
12	The Pathogenesis of Foot-and-Mouth Disease in Pigs. Frontiers in Veterinary Science, 2016, 3, 41.	0.9	68
13	Bovine Type III Interferon Significantly Delays and Reduces the Severity of Foot-and-Mouth Disease in Cattle. Journal of Virology, 2012, 86, 4477-4487.	1.5	67
14	Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression. PLoS ONE, 2015, 10, e0125698.	1.1	64
15	Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Research, 2013, 178, 328-339.	1.1	61
16	Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State. Transboundary and Emerging Diseases, 2016, 63, 152-164.	1.3	59
17	A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle. Virology, 2013, 446, 260-267.	1.1	54
18	First Detection and Genome Sequence of Senecavirus A in Vietnam. Microbiology Resource Announcements, 2019, 8, .	0.3	53

#	Article	IF	CITATIONS
19	Mutagenesis of the human transferrin receptor: two cytoplasmic phenylalanines are required for efficient internalization and a second-site mutation is capable of reverting an internalization-defective phenotype Journal of Cell Biology, 1991, 112, 853-861.	2.3	50
20	Interaction of Foot-and-Mouth Disease Virus Nonstructural Protein 3A with Host Protein DCTN3 Is Important for Viral Virulence in Cattle. Journal of Virology, 2014, 88, 2737-2747.	1.5	48
21	Pathogenesis of Primary Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Vaccinated and Non-Vaccinated Cattle. PLoS ONE, 2015, 10, e0143666.	1.1	46
22	Transmission of Foot-and-Mouth Disease from Persistently Infected Carrier Cattle to Naive Cattle via Transfer of Oropharyngeal Fluid. MSphere, 2018, 3, .	1.3	45
23	Proof-of-concept study: profile of circulating microRNAs in Bovine serum harvested during acute and persistent FMDV infection. Virology Journal, 2017, 14, 71.	1.4	43
24	Direct contact transmission of three different foot-and-mouth disease virus strains in swine demonstrates important strain-specific differences. Veterinary Journal, 2012, 193, 456-463.	0.6	40
25	Early Adaptive Immune Responses in the Respiratory Tract of Foot-and-Mouth Disease Virus-Infected Cattle. Journal of Virology, 2013, 87, 2489-2495.	1.5	40
26	Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication. PLoS ONE, 2014, 9, e106859.	1.1	40
27	Serotype Diversity of Footâ€andâ€Mouthâ€Disease Virus in Livestock without History of Vaccination in the Far North Region of Cameroon. Transboundary and Emerging Diseases, 2016, 63, e27-38.	1.3	40
28	Characterization of naturally occurring, new and persistent subclinical footâ€andâ€mouth disease virus infection in vaccinated Asian buffalo in Islamabad Capital Territory, Pakistan. Transboundary and Emerging Diseases, 2018, 65, 1836-1850.	1.3	39
29	Lack of Transmission of Foot-and-Mouth Disease Virus From Persistently Infected Cattle to NaÃ ⁻ ve Cattle Under Field Conditions in Vietnam. Frontiers in Veterinary Science, 2018, 5, 174.	0.9	38
30	Optimization of Immunohistochemical and Fluorescent Antibody Techniques for Localization of <i>Foot-and-Mouth Disease Virus</i> in Animal Tissues. Journal of Veterinary Diagnostic Investigation, 2009, 21, 779-792.	0.5	35
31	The Carrier Conundrum; A Review of Recent Advances and Persistent Gaps Regarding the Carrier State of Foot-and-Mouth Disease Virus. Pathogens, 2020, 9, 167.	1.2	35
32	Infection dynamics of foot-and-mouth disease virus in pigs using two novel simulated-natural inoculation methods. Research in Veterinary Science, 2014, 96, 396-405.	0.9	34
33	A traditional evolutionary history of foot-and-mouth disease viruses in Southeast Asia challenged by analyses of non-structural protein coding sequences. Scientific Reports, 2018, 8, 6472.	1.6	34
34	The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Frontiers in Microbiology, 2018, 9, 2644.	1.5	34
35	Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection. Virology, 2014, 452-453, 12-22.	1.1	33
36	Contact Challenge of Cattle with Foot-and-Mouth Disease Virus Validates the Role of the Nasopharyngeal Epithelium as the Site of Primary and Persistent Infection. MSphere, 2018, 3, .	1.3	32

#	Article	IF	CITATIONS
37	Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs. Frontiers in Microbiology, 2018, 9, 1891.	1.5	31
38	Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naÃ ⁻ ve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Veterinary Research, 2016, 12, 205.	0.7	27
39	First detection of foot-and-mouth disease virus O/Ind-2001d in Vietnam. PLoS ONE, 2017, 12, e0177361.	1.1	27
40	An Integrative Analysis of Footâ€andâ€Mouth Disease Virus Carriers in Vietnam Achieved Through Targeted Surveillance and Molecular Epidemiology. Transboundary and Emerging Diseases, 2017, 64, 547-563.	1.3	26
41	Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses. Scientific Reports, 2017, 7, 17800.	1.6	26
42	Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010–2014. Veterinary Research, 2017, 48, 24.	1.1	24
43	Footâ€andâ€mouth disease virus transmission dynamics and persistence in a herd of vaccinated dairy cattle in India. Transboundary and Emerging Diseases, 2018, 65, e404-e415.	1.3	24
44	Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G. PLoS ONE, 2017, 12, e0177433.	1.1	23
45	Quantitative characteristics of the footâ€andâ€mouth disease carrier state under natural conditions in India. Transboundary and Emerging Diseases, 2018, 65, 253-260.	1.3	23
46	Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx. PLoS ONE, 2016, 11, e0162750.	1.1	23
47	Parameterization of the Durations of Phases of Foot-And-Mouth Disease in Cattle. Frontiers in Veterinary Science, 2019, 6, 263.	0.9	22
48	Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs. Frontiers in Veterinary Science, 2016, 3, 105.	0.9	21
49	Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle. Virology Journal, 2017, 14, 89.	1.4	21
50	Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses. PLoS ONE, 2016, 11, e0159943.	1.1	20
51	Genetic and antigenic variation of foot-and-mouth disease virus during persistent infection in naturally infected cattle and Asian buffalo in India. PLoS ONE, 2019, 14, e0214832.	1.1	20
52	First Genome Sequence of Foot-and-Mouth Disease Virus Serotype O Sublineage Ind2001e from Southern Vietnam. Microbiology Resource Announcements, 2019, 8, .	0.3	20
53	Mechanisms of Foot-and-Mouth Disease Virus Tropism Inferred from Differential Tissue Gene Expression. PLoS ONE, 2013, 8, e64119.	1.1	20
54	Foot-and-Mouth Disease Virus-Associated Abortion and Vertical Transmission following Acute Infection in Cattle under Natural Conditions. PLoS ONE, 2016, 11, e0167163.	1.1	20

#	Article	IF	CITATIONS
55	Infection Dynamics of Foot-and-Mouth Disease Virus in Cattle Following Intranasopharyngeal Inoculation or Contact Exposure. Journal of Comparative Pathology, 2016, 155, 314-325.	0.1	19
56	Effect of vaccination on cattle subclinically infected with foot-and-mouth disease virus in Cameroon. Preventive Veterinary Medicine, 2018, 155, 1-10.	0.7	19
57	Phylogeographical and crossâ€species transmission dynamics of SAT1 and SAT2 footâ€andâ€mouth disease virus in Eastern Africa. Molecular Ecology, 2019, 28, 2903-2916.	2.0	19
58	Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea. PLoS ONE, 2016, 11, e0146445.	1.1	17
59	A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection. Virology, 2018, 516, 115-126.	1.1	17
60	Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A. Acta Veterinaria Scandinavica, 2014, 56, 42.	0.5	16
61	Simultaneous and Staggered Foot-and-Mouth Disease Virus Coinfection of Cattle. Journal of Virology, 2021, 95, e0165021.	1.5	16
62	Clinical and virological dynamics of a serotype O 2010 South East Asia lineage foot-and-mouth disease virus in sheep using natural and simulated natural inoculation and exposure systems. Veterinary Microbiology, 2015, 178, 50-60.	0.8	15
63	Early Detection of Footâ€Andâ€Mouth Disease Virus from Infected Cattle Using A Dry Filter Air Sampling System. Transboundary and Emerging Diseases, 2017, 64, 564-573.	1.3	15
64	Acute myeloid leukemia with multilineage dysplasia in an alpaca. Veterinary Clinical Pathology, 2008, 37, 289-297.	0.3	14
65	The evolution of a super-swarm of foot-and-mouth disease virus in cattle. PLoS ONE, 2019, 14, e0210847.	1.1	14
66	The role of African buffalo in the epidemiology of footâ€andâ€mouth disease in sympatric cattle and buffalo populations in Kenya. Transboundary and Emerging Diseases, 2020, 67, 2206.	1.3	14
67	Genetic diversity and comparison of diagnostic tests for characterization of footâ€andâ€mouth disease virus strains from Pakistan 2008–2012. Transboundary and Emerging Diseases, 2018, 65, 534-546.	1.3	13
68	Characterization of a chimeric foot-and-mouth disease virus bearing a bovine rhinitis B virus leader proteinase. Virology, 2013, 447, 172-180.	1.1	12
69	Molecular Epidemiology of Foot-and-Mouth Disease Virus in the Context of Transboundary Animal Movement in the Far North Region of Cameroon. Frontiers in Veterinary Science, 2018, 5, 320.	0.9	12
70	Duration of protection and humoral immunity induced by an adenovirus-vectored subunit vaccine for foot-and-mouth disease (FMD) in Holstein steers. Vaccine, 2019, 37, 6221-6231.	1.7	11
71	Extinction Dynamics of the Foot-and-Mouth Disease Virus Carrier State Under Natural Conditions. Frontiers in Veterinary Science, 2020, 7, 276.	0.9	10
72	Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology, 2016, 492, 108-117.	1.1	9

#	Article	IF	CITATIONS
73	Genome Sequence of Foot-and-Mouth Disease Virus Serotype O Lineage Ind-2001d Collected in Vietnam in 2015. Genome Announcements, 2017, 5, .	0.8	9
74	Foot-and-Mouth Disease Infection Dynamics in Contact-Exposed Pigs Are Determined by the Estimated Exposure Dose. Frontiers in Veterinary Science, 2018, 5, 167.	0.9	9
75	Hepatotoxicity associated with pyrrolizidine alkaloid (Crotalaria spp) ingestion in a horse on Easter Island. Veterinary and Human Toxicology, 1999, 41, 96-9.	0.3	9
76	Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle. Pathogens, 2022, 11, 644.	1.2	9
77	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. PLoS ONE, 2019, 14, e0227061.	1.1	8
78	The risk and mitigation of footâ€andâ€mouth disease virus infection of pigs through consumption of contaminated feed. Transboundary and Emerging Diseases, 2021, , .	1.3	8
79	Efficacy of a high potency O1 Manisa monovalent vaccine against heterologous challenge with foot-and-mouth disease virus of O/SEA/Mya-98 lineage in sheep. Antiviral Research, 2017, 145, 114-122.	1.9	7
80	Genome Sequences of 18 Foot-and-Mouth Disease Virus Outbreak Strains of Serotype O Sublineage Ind2001d from India, 2013 to 2014. Microbiology Resource Announcements, 2019, 8, .	0.3	7
81	Quantitative impacts of incubation phase transmission of foot-and-mouth disease virus. Scientific Reports, 2019, 9, 2707.	1.6	7
82	Characterization of transboundary footâ€andâ€mouth disease viruses in Nigeria and Cameroon during 2016. Transboundary and Emerging Diseases, 2020, 67, 1257-1270.	1.3	7
83	A Single Amino Acid Substitution in the Matrix Protein (M51R) of Vesicular Stomatitis New Jersey Virus Impairs Replication in Cultured Porcine Macrophages and Results in Significant Attenuation in Pigs. Frontiers in Microbiology, 2020, 11, 1123.	1.5	7
84	Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in NaÃ ⁻ ve and Vaccinated Cattle. Pathogens, 2020, 9, 208.	1.2	7
85	Estimation of foot-and-mouth disease windborne transmission risk from USA beef feedlots. Preventive Veterinary Medicine, 2021, 195, 105453.	0.7	7
86	FOOT-AND-MOUTH DISEASE IN A SMALL SAMPLE OF EXPERIMENTALLY INFECTED PRONGHORN (<i>ANTILOCAPRA AMERICANA</i>). Journal of Wildlife Diseases, 2016, 52, 862-873.	0.3	6
87	Validation of a site-specific recombination cloning technique for the rapid development of a full-length cDNA clone of a virulent field strain of vesicular stomatitis New Jersey virus. Journal of Virological Methods, 2019, 265, 113-116.	1.0	6
88	Duration of Contagion of Foot-And-Mouth Disease Virus in Infected Live Pigs and Carcasses. Frontiers in Veterinary Science, 2020, 7, 334.	0.9	6
89	Impact of mass vaccination on the spatiotemporal dynamics of FMD outbreaks in India, 2008–2016. Transboundary and Emerging Diseases, 2022, , .	1.3	6
90	Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues. Vaccine, 2012, 30, 1690-1701.	1.7	5

#	Article	IF	CITATIONS
91	Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate for rAd5-FMDV vaccines in cattle. Veterinary Immunology and Immunopathology, 2013, 151, 37-48.	0.5	5
92	Site-specific substitution (Q172R) in the VP1 protein of FMDV isolates collected from asymptomatic carrier ruminants in Vietnam. Virology Reports, 2016, 6, 90-96.	0.4	5
93	Outbreak investigations of foot and mouth disease virus in Nepal between 2010 and 2015 in the context of historical serotype occurrence. Veterinary Medicine and Science, 2018, 4, 304-314.	0.6	5
94	Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Frontiers in Veterinary Science, 2020, 7, 340.	0.9	5
95	Novel Recombinant Foot-and-Mouth Disease Virus Circulating in Vietnam. Microbiology Resource Announcements, 2021, 10, .	0.3	5
96	Interactive Computerized Learning Program Exposes Veterinary Students to Challenging International Animal-Health Problems. Journal of Veterinary Medical Education, 2007, 34, 497-501.	0.4	5
97	FOOT-AND-MOUTH DISEASE IN EXPERIMENTALLY INFECTED MULE DEER (ODOCOILEUS HEMIONUS). Journal of Wildlife Diseases, 2020, 56, 93.	0.3	4
98	Foot-and-Mouth Disease Virus Lacking the Leader Protein and Containing Two Negative DIVA Markers (FMDV LL3B3D A24) Is Highly Attenuated in Pigs. Pathogens, 2020, 9, 129.	1.2	4
99	Evolution and expansion dynamics of a vectorâ€borne virus: 2004–2006 vesicular stomatitis outbreak in the western USA. Ecosphere, 2021, 12, e03793.	1.0	4
100	Use of Slaughterhouses as Sentinel Points for Genomic Surveillance of Foot-and-Mouth Disease Virus in Southern Vietnam. Viruses, 2021, 13, 2203.	1.5	4
101	Viral Population Diversity during Co-Infection of Foot-And-Mouth Disease Virus Serotypes SAT1 and SAT2 in African Buffalo in Kenya. Viruses, 2022, 14, 897.	1.5	4
102	A novel bovine CXCL15 gene in the GRO chemokine gene cluster. Veterinary Immunology and Immunopathology, 2020, 220, 109990.	0.5	3
103	Detection of Foot-and-Mouth Disease Virus in the Absence of Clinical Disease in Cattle and Buffalo in South East Asia. Frontiers in Veterinary Science, 2021, 8, 691308.	0.9	3
104	Parameterization of the durations of phases of foot-and-mouth disease in pigs. Preventive Veterinary Medicine, 2022, 202, 105615.	0.7	3
105	Effect of storage conditions on subpopulations of peripheral blood T lymphocytes isolated from naìve cattle and cattle infected with footâ€andâ€mouth disease virus. Veterinary Clinical Pathology, 2016, 45, 110-115.	0.3	2
106	Genome Sequences of Seven Foot-and-Mouth Disease Virus Isolates Collected from Serial Samples from One Persistently Infected Carrier Cow in Vietnam. Genome Announcements, 2017, 5, .	0.8	2
107	Evidence of subclinical foot-and-mouth disease virus infection in young calves born from clinically recovered cow under natural condition. Tropical Animal Health and Production, 2018, 50, 1167-1170.	0.5	2
108	Genome Sequences of Foot-and-Mouth Disease Virus SAT1 and SAT2 Strains from Kenya in 2014 to 2016. Microbiology Resource Announcements, 2019, 8, .	0.3	2

#	Article	IF	CITATIONS
109	Foot-and-Mouth Disease Virus Serotype O/CATHAY Genome Sequences from Five Outbreaks in Vietnam, 2017 to 2019. Microbiology Resource Announcements, 2020, 9, .	0.3	2
110	Foot-and-Mouth Disease Virus Serotype A Genome Sequence from Kenya in 2016. Microbiology Resource Announcements, 2019, 8, .	0.3	1
111	Genome Sequences of Seven Foot-and-Mouth Disease Virus Isolates Reveal Diversity in the O/ME-SA/Ind2001 Lineage in India between 1997 and 2009. Microbiology Resource Announcements, 2020, 9, .	0.3	1
112	Multiple Genome Sequences of Foot-and-Mouth Disease Virus Asia-1 Lineage Sindh-08 from Outbreaks in Pakistan, 2011 to 2012. Microbiology Resource Announcements, 2022, , e0031222.	0.3	1
113	Multiple Genomes of Foot-and-Mouth Disease Virus Serotype Asia-1 Obtained from Subclinically Infected Asian Buffalo (Bubalus bubalis) in Pakistan. Microbiology Resource Announcements, 0, , .	0.3	1
114	Intracellular Localization of Foot-and-Mouth Disease Virus Transgene Expression in vivo and in vitro After Infection with Adenovirus Vaccine Constructs. Microscopy and Microanalysis, 2009, 15, 954-955.	0.2	0
115	A56â€,Evolutionary analyses of foot-and-mouth disease virus in Southeast Asia using whole-genome sequences. Virus Evolution, 2018, 4, .	2.2	0
116	A55â€,Foot-and-mouth disease virus undergoes abundant viral genomic changes at distinct stages of infection of cattle. Virus Evolution, 2018, 4, .	2.2	0
117	First Report of Near-Complete Genome Sequences of Foot-and-Mouth Disease Virus Serotype O Strains from Kenya. Microbiology Resource Announcements, 2019, 8, .	0.3	0
118	Genome Sequences of Four Foot-and-Mouth Disease Virus SAT 1 Topotype X Isolates from Cameroon. Microbiology Resource Announcements, 2019, 8, .	0.3	0
119	Near-Full-Length Genome Sequence of a Foot-and-Mouth Disease Virus of Serotype Southern African Territories 2 Isolated from Nigeria in 2014. Microbiology Resource Announcements, 2019, 8, .	0.3	0
120	Genome of Bovine Viral Diarrhea Virus (BVDV) Contaminating a Continuous LFBK-α V β 6 Cell Line. Microbiology Resource Announcements, 2022, , e0116721.	0.3	0
121	FOOT-AND-MOUTH DISEASE IN EXPERIMENTALLY INFECTED MULE DEER (). Journal of Wildlife Diseases, 2020, 56, 93-104.	0.3	0
122	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
123	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
124	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
125	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
126	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0

#	Article	IF	CITATIONS
127	Virulence beneath the fleece; a tale of foot-and-mouth disease virus pathogenesis in sheep. , 2019, 14, e0227061.		0
128	Genome Sequences of Foot-and-Mouth Disease Virus Serotype A and O Strains Obtained from Subclinically Infected Asian Buffalo <i>(Bubalus bubalis)</i> in Pakistan. Microbiology Resource Announcements, 0, , .	0.3	0