
Morgan D Salmon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/599257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature Medicine, 2015, 21, 628-637.	15.2	869
2	Genetic and Pharmacologic Disruption of Interleukin-1β Signaling Inhibits Experimental Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 294-304.	1.1	143
3	Cooperative Binding of KLF4, pELK-1, and HDAC2 to a G/C Repressor Element in the SM22α Promoter Mediates Transcriptional Silencing During SMC Phenotypic Switching In Vivo. Circulation Research, 2012, 111, 685-696.	2.0	129
4	KLF4 Regulates Abdominal Aortic Aneurysm Morphology and Deletion Attenuates Aneurysm Formation. Circulation, 2013, 128, S163-74.	1.6	106
5	Inhibition of Interleukin-1β Decreases Aneurysm Formation and Progression in a Novel Model of Thoracic Aortic Aneurysms. Circulation, 2014, 130, S51-9.	1.6	102
6	Dâ€series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization. FASEB Journal, 2016, 30, 4192-4201.	0.2	88
7	Human mesenchymal stromal cellâ€derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation <i>via</i> microRNAâ€147. FASEB Journal, 2018, 32, 6038-6050.	0.2	62
8	Resolvin D1 decreases abdominal aortic aneurysm formation by inhibiting NETosis in a mouse model. Journal of Vascular Surgery, 2018, 68, 93S-103S.	0.6	48
9	ExÂvivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 538-546.	0.4	44
10	Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 908-918.	1.1	42
11	Interleukin-6 Receptor Inhibition Prevents Descending Thoracic Aortic Aneurysm Formation. Annals of Thoracic Surgery, 2015, 100, 1620-1626.	0.7	37
12	Aromatase is required for female abdominal aortic aneurysm protection. Journal of Vascular Surgery, 2015, 61, 1565-1574.e4.	0.6	29
13	A novel reproducible model of aortic aneurysm rupture. Surgery, 2018, 163, 397-403.	1.0	27
14	<i>Klf4</i> , <i>Klf2</i> , and <i>Zfp148</i> activate autophagyâ€related genes in smooth muscle cells during aortic aneurysm formation. Physiological Reports, 2019, 7, e14058.	0.7	27
15	Endothelial pannexin-1 channels modulate macrophage and smooth muscle cell activation in abdominal aortic aneurysm formation. Nature Communications, 2022, 13, 1521.	5.8	27
16	A novel swine model of abdominal aortic aneurysm. Journal of Vascular Surgery, 2019, 70, 252-260.e2.	0.6	23
17	Attenuation of aortic aneurysms with stem cells from different genders. Journal of Surgical Research, 2015, 199, 249-258.	0.8	22
18	5-Lipoxygenase Pathway in Experimental Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2669-2678.	1.1	19

Morgan D Salmon

#	Article	IF	CITATIONS
19	Female Mice Exhibit Abdominal Aortic Aneurysm Protection in an Established Rupture Model. Journal of Surgical Research, 2020, 247, 387-396.	0.8	18
20	Pharmacologic blockade and genetic deletion of androgen receptor attenuates aortic aneurysm formation. Journal of Vascular Surgery, 2016, 63, 1602-1612.e2.	0.6	17
21	The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis. Differentiation, 2009, 77, 492-504.	1.0	16
22	ExÂVivo Lung Perfusion Rehabilitates Sepsis-Induced Lung Injury. Annals of Thoracic Surgery, 2017, 103, 1723-1729.	0.7	16
23	InÂvivo lung perfusion rehabilitates sepsis-induced lung injury. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 440-448.e2.	0.4	15
24	Endothelial Transient Receptor Potential Vanilloid 4 Channels Mediate Lung Ischemia-Reperfusion Injury. Annals of Thoracic Surgery, 2022, 113, 1256-1264.	0.7	10
25	Pharmacologic inhibition of transient receptor channel vanilloid 4 attenuates abdominal aortic aneurysm formation. FASEB Journal, 2020, 34, 9787-9801.	0.2	7
26	Porcine Model of Infrarenal Abdominal Aortic Aneurysm. Journal of Visualized Experiments, 2019, , .	0.2	5
27	Sex-Based Differences Among Experimental Swine Abdominal Aortic aneurysms. Journal of Surgical Research, 2021, 260, 488-498.	0.8	4
28	Mesenchymal Stem Cells Alter MicroRNA Expression and Attenuate Thoracic Aortic Aneurysm Formation. Journal of Surgical Research, 2021, 268, 221-231.	0.8	4
29	Tamsulosin attenuates abdominal aortic aneurysm growth. Surgery, 2018, 164, 1087-1092.	1.0	3
30	Genetic and Pharmacological Disruption of Interleukin-1α Leads to Augmented Murine Aortic Aneurysm. Annals of Vascular Surgery, 2022, 85, 358-370.	0.4	3
31	Murine Surgical Model of Topical Elastase Induced Descending Thoracic Aortic Aneurysm. Journal of Visualized Experiments, 2019, , .	0.2	2
32	Response to Letter Regarding Article, "Inhibition of Interleukin-1β Decreases Aneurysm Formation and Progression in a Novel Model of Thoracic Aortic Aneurysm― Circulation, 2015, 131, e400.	1.6	1
33	Secondary Burn Progression Mitigated by an Adenosine 2A Receptor Agonist. Journal of Burn Care and Research, 2021, , .	0.2	1