
Ricarda Scheiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5991774/publications.pdf Version: 2024-02-01

RICARDA SCHEINER

#	Article	IF	CITATIONS
1	Interaction of Insecticides and Fungicides in Bees. Frontiers in Insect Science, 2022, 1, .	2.1	14
2	In Vitro Rearing Changes Social Task Performance and Physiology in Honeybees. Insects, 2022, 13, 4.	2.2	3
3	Tyramine 1 Receptor Distribution in the Brain of Corbiculate Bees Points to a Conserved Function. Brain, Behavior and Evolution, 2021, 96, 13-25.	1.7	3
4	Survival rate and changes in foraging performances of solitary bees exposed to a novel insecticide. Ecotoxicology and Environmental Safety, 2021, 211, 111869.	6.0	19
5	Comparing the Appetitive Learning Performance of Six European Honeybee Subspecies in a Common Apiary. Insects, 2021, 12, 768.	2.2	1
6	Opposing Actions of Octopamine and Tyramine on Honeybee Vision. Biomolecules, 2021, 11, 1374.	4.0	8
7	Evidence of cognitive specialization in an insect: proficiency is maintained across elemental and higher-order visual learning but not between sensory modalities in honey bees. Journal of Experimental Biology, 2021, 224, .	1.7	11
8	Interâ€individual variation in honey bee dance intensity correlates with expression of the <i>foraging</i> gene. Genes, Brain and Behavior, 2020, 19, e12592.	2.2	16
9	Hyperthermia treatment can kill immature and adult Varroa destructor mites without reducing drone fertility. Apidologie, 2020, 51, 307-315.	2.0	13
10	Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees <i>Apis mellifera</i> . Journal of Applied Ecology, 2020, 57, 609-618.	4.0	37
11	CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees. Chemical Senses, 2020, 45, 655-666.	2.0	24
12	The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees. Insects, 2020, 11, 692.	2.2	4
13	Short-term hyperthermia at larval age reduces sucrose responsiveness of adult honeybees and can increase life span. Apidologie, 2020, 51, 570-582.	2.0	6
14	A Novel Thermal-Visual Place Learning Paradigm for Honeybees (Apis mellifera). Frontiers in Behavioral Neuroscience, 2020, 14, 56.	2.0	1
15	The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology, 2019, 28, 354-366.	2.4	44
16	Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Scientific Reports, 2018, 8, 4954.	3.3	69
17	Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis) Tj ETQq1	1 0.7843	14 rgBT /Ove 21
18	Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. Journal of Experimental Biology, 2017, 220, 1443-1450.	1.7	51

RICARDA SCHEINER

#	Article	IF	CITATIONS
19	Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain. Journal of Comparative Neurology, 2017, 525, 2615-2631.	1.6	20
20	AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity. Insect Biochemistry and Molecular Biology, 2017, 80, 91-100.	2.7	34
21	Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain. Journal of Comparative Neurology, 2017, 525, spc1-spc1.	1.6	Ο
22	The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees (Apis mellifera) Differ between Behavioral Castes. Frontiers in Systems Neuroscience, 2017, 11, 55.	2.5	26
23	Differences in the phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain titers. Frontiers in Physiology, 2014, 5, 116.	2.8	41
24	Division of labour in honey bees: age―and taskâ€related changes in the expression of octopamine receptor genes. Insect Molecular Biology, 2014, 23, 833-841.	2.0	36
25	Octopamine indirectly affects proboscis extension response habituation in Drosophila melanogaster by controlling sucrose responsiveness. Journal of Insect Physiology, 2014, 69, 107-117.	2.0	29
26	PKG in honey bees: Spatial expression, <i>Amfor</i> gene expression, sucrose responsiveness, and division of labor. Journal of Comparative Neurology, 2014, 522, 1786-1799.	1.6	41
27	Rapid learning dynamics in individual honeybees during classical conditioning. Frontiers in Behavioral Neuroscience, 2014, 8, 313.	2.0	35
28	Suitability of three common reference genes for quantitative real-time PCR in honey bees. Apidologie, 2013, 44, 342-350.	2.0	54
29	Standard methods for behavioural studies of <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-58.	1.5	122
30	The honey bee tyramine receptor AmTYR1 and division of foraging labor. Journal of Experimental Biology, 2013, 217, 1215-7.	1.7	16
31	Octopamine improves learning in newly emerged bees but not in old foragers. Journal of Experimental Biology, 2012, 215, 1076-1083.	1.7	44
32	Birth weight and sucrose responsiveness predict cognitive skills of honeybee foragers. Animal Behaviour, 2012, 84, 305-308.	1.9	17
33	Effects of patriline on gustatory responsiveness and olfactory learning in honey bees. Apidologie, 2010, 41, 29-37.	2.0	26
34	Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cellular and Molecular Life Sciences, 2010, 67, 2467-2479.	5.4	90
35	Learning at old age: a study on winter bees. Frontiers in Behavioral Neuroscience, 2010, 4, 15.	2.0	25
36	Impaired tactile learning is related to social role in honeybees. Journal of Experimental Biology, 2009, 212, 994-1002.	1.7	43

3

RICARDA SCHEINER

#	Article	IF	CITATIONS
37	Evidence for associative learning in newly emerged honey bees (Apis mellifera). Animal Cognition, 2009, 12, 249-255.	1.8	28
38	The <i>foraging</i> gene of <i>Drosophila melanogaster</i> : Spatialâ€expression analysis and sucrose responsiveness. Journal of Comparative Neurology, 2007, 504, 570-582.	1.6	55
39	Cognitive aging is linked to social role in honey bees (Apis mellifera). Experimental Gerontology, 2007, 42, 1146-1153.	2.8	97
40	The Development and Evolution of Division of Labor and Foraging Specialization in a Social Insect (Apis mellifera L.). Current Topics in Developmental Biology, 2006, 74, 253-286.	2.2	139
41	Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behavioural Brain Research, 2006, 169, 201-205.	2.2	125
42	Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.). Behavioural Brain Research, 2006, 174, 174-180.	2.2	36
43	Aminergic Control and Modulation of Honeybee Behaviour. Current Neuropharmacology, 2006, 4, 259-276.	2.9	137
44	The functions of antennal mechanoreceptors and antennal joints in tactile discrimination of the honeybee (Apis mellifera L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 857-864.	1.6	24
45	Sensory responsiveness and the effects of equal subjective rewards on tactile learning and memory of honeybees. Learning and Memory, 2005, 12, 626-635.	1.3	98
46	Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie, 2004, 35, 133-142.	2.0	232
47	Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in Drosophila melanogaster. Learning and Memory, 2004, 11, 303-311.	1.3	87
48	Responsiveness to sucrose and habituation of the proboscis extension response in honey bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 727-33.	1.6	50
49	Activity of protein kinase A and gustatory responsiveness in the honey bee (Apis mellifera L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 427-434.	1.6	29
50	Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie, 2003, 34, 67-72.	2.0	108
51	Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behavioural Brain Research, 2002, 136, 545-553.	2.2	190
52	The Effects of Genotype, Foraging Role, and Sucrose Responsiveness on the Tactile Learning Performance of Honey Bees (Apis mellifera L.). Neurobiology of Learning and Memory, 2001, 76, 138-150.	1.9	171
53	Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behavioural Brain Research, 2001, 120, 67-73.	2.2	155
54	Learning in honey bees with brain lesions: how partial mushroom-body ablations affect sucrose responsiveness and tactile antennal learning. Animal Cognition, 2001, 3, 227-235.	1.8	38

#	Article	IF	CITATIONS
55	Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1999, 185, 1-10.	1.6	159