
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5991269/publications.pdf Version: 2024-02-01



FDIC F IENSEN

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Studies on the Competition Between Homogeneous and Heterogeneous Ice Nucleation in Cirrus<br>Formation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                             | 1.2 | 15        |
| 2  | Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements.<br>Nature Geoscience, 2022, 15, 177-183.                                                                          | 5.4 | 39        |
| 3  | Unprecedented Observations of a Nascent In Situ Cirrus in the Tropical Tropopause Layer. Geophysical Research Letters, 2021, 48, e2020GL090936.                                                                  | 1.5 | 3         |
| 4  | Cloud and Aerosol Distributions From SAGE III/ISS Observations. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, e2021JD035550.                                                                     | 1.2 | 4         |
| 5  | Impact of Convectively Detrained Ice Crystals on the Humidity of the Tropical Tropopause Layer in<br>Boreal Winter. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032894.                    | 1.2 | 9         |
| 6  | Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties.<br>Nature Communications, 2020, 11, 4526.                                                                    | 5.8 | 51        |
| 7  | Assessment of Observational Evidence for Direct Convective Hydration of the Lower Stratosphere.<br>Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032793.                                     | 1.2 | 21        |
| 8  | Influence of convection on stratospheric water vapor in the North American monsoon region.<br>Atmospheric Chemistry and Physics, 2020, 20, 12153-12161.                                                          | 1.9 | 10        |
| 9  | A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations.<br>Atmospheric Chemistry and Physics, 2020, 20, 12569-12608.                                                    | 1.9 | 80        |
| 10 | A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils. Journal of Geophysical Research<br>D: Atmospheres, 2019, 124, 10049-10090.                                                               | 1.2 | 54        |
| 11 | An Evaluation of the Representation of Tropical Tropopause Cirrus in the CESM/CARMA Model Using<br>Satellite and Aircraft Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124,<br>8659-8687. | 1.2 | 4         |
| 12 | Observational Evidence of Horizontal Transportâ€Ðriven Dehydration in the TTL. Geophysical Research<br>Letters, 2019, 46, 7848-7856.                                                                             | 1.5 | 6         |
| 13 | The Impact of Mesoscale Gravity Waves on Homogeneous Ice Nucleation in Cirrus Clouds. Geophysical<br>Research Letters, 2019, 46, 5556-5565.                                                                      | 1.5 | 15        |
| 14 | Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer. Journal of Geophysical<br>Research D: Atmospheres, 2019, 124, 3984-4003.                                                                   | 1.2 | 34        |
| 15 | The Life Cycles of Ice Crystals Detrained From the Tops of Deep Convection. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 9624-9634.                                                             | 1.2 | 17        |
| 16 | On the Statistical Distribution of Total Water in Cirrus Clouds. Geophysical Research Letters, 2018,<br>45, 9963-9971.                                                                                           | 1.5 | 2         |
| 17 | Lapse Rate or Cold Point: The Tropical Tropopause Identified by In Situ Trace Gas Measurements.<br>Geophysical Research Letters, 2018, 45, 10,756.                                                               | 1.5 | 25        |
| 18 | Ash Particles Detected in the Tropical Lower Stratosphere. Geophysical Research Letters, 2018, 45, 11,483.                                                                                                       | 1.5 | 4         |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Heterogeneous Ice Nucleation in the Tropical Tropopause Layer. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 12,210.                                                                              | 1.2 | 16        |
| 20 | Convective Hydration of the Upper Troposphere and Lower Stratosphere. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 4583-4593.                                                                    | 1.2 | 39        |
| 21 | Microphysical Properties of Tropical Tropopause Layer Cirrus. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 6053-6069.                                                                            | 1.2 | 35        |
| 22 | Convective Influence on the Humidity and Clouds in the Tropical Tropopause Layer During Boreal Summer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7576-7593.                                      | 1.2 | 52        |
| 23 | Impact of gravity waves on the motion and distribution of atmospheric ice particles. Atmospheric<br>Chemistry and Physics, 2018, 18, 10799-10823.                                                                 | 1.9 | 23        |
| 24 | The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific. Bulletin of the American Meteorological Society, 2017, 98, 129-143.                        | 1.7 | 79        |
| 25 | Microscale characteristics of homogeneous freezing events in cirrus clouds. Geophysical Research<br>Letters, 2017, 44, 2027-2034.                                                                                 | 1.5 | 10        |
| 26 | Gravity wave spectra in the lower stratosphere diagnosed from project loon balloon trajectories.<br>Journal of Geophysical Research D: Atmospheres, 2017, 122, 8517-8524.                                         | 1.2 | 22        |
| 27 | Small-Scale Wind Fluctuations in the Tropical Tropopause Layer from Aircraft Measurements:<br>Occurrence, Nature, and Impact on Vertical Mixing. Journals of the Atmospheric Sciences, 2017, 74,<br>3847-3869.    | 0.6 | 23        |
| 28 | Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6094-6107.            | 1.2 | 20        |
| 29 | Air parcel trajectory dispersion near the tropical tropopause. Journal of Geophysical Research D:<br>Atmospheres, 2016, 121, 3759-3775.                                                                           | 1.2 | 7         |
| 30 | On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance. Journals of the Atmospheric<br>Sciences, 2016, 73, 2445-2464.                                                                              | 0.6 | 28        |
| 31 | Observational constraints on the efficiency of dehydration mechanisms in the tropical tropopause<br>layer. Geophysical Research Letters, 2016, 43, 2912-2918.                                                     | 1.5 | 27        |
| 32 | The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction. Earth and Space Science, 2016, 3, 295-305.                                            | 1.1 | 17        |
| 33 | Ubiquitous influence of waves on tropical high cirrus clouds. Geophysical Research Letters, 2016, 43, 5895-5901.                                                                                                  | 1.5 | 42        |
| 34 | Highâ€frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus.<br>Geophysical Research Letters, 2016, 43, 6629-6635.                                                           | 1.5 | 39        |
| 35 | Gravity waves amplify upper tropospheric dehydration by clouds. Earth and Space Science, 2015, 2, 485-500.                                                                                                        | 1.1 | 30        |
| 36 | Dynamical, convective, and microphysical control on wintertime distributions of water vapor and<br>clouds in the tropical tropopause layer. Journal of Geophysical Research D: Atmospheres, 2015, 120,<br>10,483. | 1.2 | 53        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of the transport processes controlling the geographic distribution of carbon<br>monoxide at the tropical tropopause. Journal of Geophysical Research D: Atmospheres, 2015, 120,<br>2067-2086.                                                | 1.2 | 10        |
| 38 | Analyzing dynamical circulations in the tropical tropopause layer through empirical predictions of cirrus cloud distributions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2831-2845.                                                       | 1.2 | 1         |
| 39 | Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5299-5316.                                                                         | 1.2 | 28        |
| 40 | Cloud formation, convection, and stratospheric dehydration. Earth and Space Science, 2014, 1, 1-17.                                                                                                                                                        | 1.1 | 35        |
| 41 | Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature<br>Geoscience, 2013, 6, 169-176.                                                                                                                         | 5.4 | 284       |
| 42 | Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science, 2013, 340, 1320-1324.                                                                                                                                                   | 6.0 | 442       |
| 43 | Ice nucleation and dehydration in the Tropical Tropopause Layer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2041-2046.                                                                                    | 3.3 | 113       |
| 44 | State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmospheric Chemistry and Physics, 2013, 13, 5615-5628.                                                                                                                | 1.9 | 82        |
| 45 | Physical processes controlling ice concentrations in synoptically forced, midlatitude cirrus. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5348-5360.                                                                                        | 1.2 | 51        |
| 46 | Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit.<br>Journal of Geophysical Research D: Atmospheres, 2013, 118, 2560-2575.                                                                                   | 1.2 | 111       |
| 47 | Improved cirrus simulations in a general circulation model using CARMA sectional microphysics.<br>Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,679.                                                                                       | 1.2 | 20        |
| 48 | Global variations of HDO and HDO/H <sub>2</sub> O ratios in the upper troposphere and lower<br>stratosphere derived from ACEâ€FTS satellite measurements. Journal of Geophysical Research, 2012, 117, .                                                    | 3.3 | 72        |
| 49 | Seasonal differences of verticalâ€transport efficiency in the tropical tropopause layer: On the interplay<br>between tropical deep convection, largeâ€scale vertical ascent, and horizontal circulations. Journal of<br>Geophysical Research, 2012, 117, . | 3.3 | 80        |
| 50 | Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause.<br>Journal of Geophysical Research, 2012, 117, .                                                                                                            | 3.3 | 33        |
| 51 | Impact of radiative heating, wind shear, temperature variability, and microphysical processes on the structure and evolution of thin cirrus in the tropical tropopause layer. Journal of Geophysical Research, 2011, 116, .                                | 3.3 | 42        |
| 52 | Cirrus cloud-temperature interactions in the tropical tropopause layer: a case study. Atmospheric<br>Chemistry and Physics, 2011, 11, 10085-10095.                                                                                                         | 1.9 | 27        |
| 53 | lce nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmospheric<br>Chemistry and Physics, 2010, 10, 1369-1384.                                                                                                          | 1.9 | 107       |
| 54 | Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. Journal of<br>Geophysical Research, 2010, 115, .                                                                                                                  | 3.3 | 93        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling<br>Experiment (TC4). Journal of Geophysical Research, 2010, 115, .                                     | 3.3 | 120       |
| 56 | In situ and lidar observations of tropopause subvisible cirrus clouds during TC4. Journal of Geophysical Research, 2010, 115, .                                                                            | 3.3 | 69        |
| 57 | On the importance of small ice crystals in tropical anvil cirrus. Atmospheric Chemistry and Physics, 2009, 9, 5519-5537.                                                                                   | 1.9 | 151       |
| 58 | Numerical simulations of the threeâ€dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. Journal of Geophysical Research, 2008, 113, .                                      | 3.3 | 159       |
| 59 | Formation of large (â‰f100 μm) ice crystals near the tropical tropopause. Atmospheric Chemistry and Physics, 2008, 8, 1621-1633.                                                                           | 1.9 | 69        |
| 60 | Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause<br>layer. Atmospheric Chemistry and Physics, 2008, 8, 1609-1620.                                         | 1.9 | 126       |
| 61 | Can overshooting convection dehydrate the tropical tropopause layer?. Journal of Geophysical Research, 2007, 112, .                                                                                        | 3.3 | 92        |
| 62 | Role of deep convection in establishing the isotopic composition of water vapor in the tropical transition layer. Geophysical Research Letters, 2006, 33, .                                                | 1.5 | 37        |
| 63 | Homogeneous aerosol freezing in the tops of high-altitude tropical cumulonimbus clouds.<br>Geophysical Research Letters, 2006, 33, .                                                                       | 1.5 | 23        |
| 64 | Implications of persistent ice supersaturation in cold cirrus for stratospheric water vapor.<br>Geophysical Research Letters, 2005, 32, .                                                                  | 1.5 | 27        |
| 65 | Formation of a tropopause cirrus layer observed over Florida during CRYSTAL-FACE. Journal of Geophysical Research, 2005, 110, .                                                                            | 3.3 | 38        |
| 66 | Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei.<br>Science, 2004, 304, 718-722.                                                                              | 6.0 | 112       |
| 67 | Transport and freeze-drying in the tropical tropopause layer. Journal of Geophysical Research, 2004, 109, .                                                                                                | 3.3 | 228       |
| 68 | Aircraft observations of thin cirrus clouds near the tropical tropopause. Journal of Geophysical<br>Research, 2001, 106, 9765-9786.                                                                        | 3.3 | 122       |
| 69 | A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. Journal of Geophysical Research, 2001, 106, 17237-17252. | 3.3 | 101       |
| 70 | High humidities and subvisible cirrus near the tropical tropopause. Geophysical Research Letters, 1999, 26, 2347-2350.                                                                                     | 1.5 | 46        |
| 71 | Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS. Geophysical Research Letters, 1998, 25, 1363-1366.                                                                     | 1.5 | 116       |
| 72 | Spreading and growth of contrails in a sheared environment. Journal of Geophysical Research, 1998, 103, 31557-31567.                                                                                       | 3.3 | 69        |

5

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause. Geophysical Research Letters, 1996, 23, 825-828. | 1.5 | 141       |
| 74 | lce nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate. Geophysical Research Letters, 1994, 21, 2019-2022.      | 1.5 | 83        |
| 75 | Modeling coagulation among particles of different composition and size. Atmospheric Environment, 1994, 28, 1327-1338.                                                  | 1.9 | 257       |