List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5991260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Current Topics in Medicinal Chemistry, 2008, 8, 1555-1572.	1.0	831
2	FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination. Cell, 2009, 136, 123-135.	13.5	442
3	The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO Journal, 2013, 32, 2362-2376.	3.5	408
4	Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Frontiers in Pharmacology, 2018, 9, 923.	1.6	401
5	Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. Journal of Neuroinflammation, 2019, 16, 148.	3.1	275
6	Synthesis, CoMFA Analysis, and Receptor Docking of 3,5-Diacyl-2,4-Dialkylpyridine Derivatives as Selective A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 706-721.	2.9	187
7	USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011, 13, 1368-1375.	4.6	182
8	DNA Binding Site Selection of Dimeric and Tetrameric Stat5 Proteins Reveals a Large Repertoire of Divergent Tetrameric Stat5a Binding Sites. Molecular and Cellular Biology, 2000, 20, 389-401.	1.1	169
9	Progress in the pursuit of therapeutic adenosine receptor antagonists. Medicinal Research Reviews, 2006, 26, 131-159.	5.0	154
10	Human P2Y1Receptor:Â Molecular Modeling and Site-Directed Mutagenesis as Tools To Identify Agonist and Antagonist Recognition Sites. Journal of Medicinal Chemistry, 1998, 41, 1456-1466.	2.9	153
11	Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges. Structure, 2014, 22, 1120-1139.	1.6	149
12	Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochemical Journal, 2009, 421, 387-395.	1.7	140
13	Toward the rational design of protein kinase casein kinase-2 inhibitors. , 2002, 93, 159-168.		139
14	Supervised Molecular Dynamics (SuMD) as a Helpful Tool To Depict GPCR–Ligand Recognition Pathway in a Nanosecond Time Scale. Journal of Chemical Information and Modeling, 2014, 54, 372-376.	2.5	135
15	Identification of Ellagic Acid as Potent Inhibitor of Protein Kinase CK2:Â A Successful Example of a Virtual Screening Application. Journal of Medicinal Chemistry, 2006, 49, 2363-2366.	2.9	134
16	The Role of Amino Acids in Extracellular Loops of the Human P2Y1 Receptor in Surface Expression and Activation Processes. Journal of Biological Chemistry, 1999, 274, 14639-14647.	1.6	132
17	Synthesis, Biological Activity, and Molecular Modeling of Ribose-Modified Deoxyadenosine Bisphosphate Analogues as P2Y1Receptor Ligands. Journal of Medicinal Chemistry, 2000, 43, 829-842.	2.9	129
18	Structureâ^'Activity Relationships and Molecular Modeling of 3,5-Diacyl-2,4-dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1998, 41, 3186-3201.	2.9	126

#	Article	IF	CITATIONS
19	Role of the Extracellular Loops of G Protein-Coupled Receptors in Ligand Recognition:Â A Molecular Modeling Study of the Human P2Y1Receptor. Biochemistry, 1999, 38, 3498-3507.	1.2	125
20	Coumarin as Attractive Casein Kinase 2 (CK2) Inhibitor Scaffold: An Integrate Approach To Elucidate the Putative Binding Motif and Explain Structure–Activity Relationships. Journal of Medicinal Chemistry, 2008, 51, 752-759.	2.9	123
21	Mimicking the vanadium bromoperoxidases reactions:Mild and selective bromination of arenes and alkenes in a two-phase system. Tetrahedron Letters, 1994, 35, 7429-7432.	0.7	121
22	Hemolytic Effects of Water-Soluble Fullerene Derivatives. Journal of Medicinal Chemistry, 2004, 47, 6711-6715.	2.9	114
23	Toward Efficient Zn(II)-Based Artificial Nucleases. Journal of the American Chemical Society, 2004, 126, 4543-4549.	6.6	112
24	MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochemical Pharmacology, 2012, 83, 16-26.	2.0	111
25	Tetrabromocinnamic Acid (TBCA) and Related Compounds Represent a New Class of Specific Protein Kinase CK2 Inhibitors. ChemBioChem, 2007, 8, 129-139.	1.3	109
26	Derivatives of the Triazoloquinazoline Adenosine Antagonist (CGS 15943) Having High Potency at the Human A2Band A3Receptor Subtypes. Journal of Medicinal Chemistry, 1998, 41, 2835-2845.	2.9	106
27	6-Aminoquinolones as New Potential Anti-HIV Agents. Journal of Medicinal Chemistry, 2000, 43, 3799-3802.	2.9	105
28	Synthesis, Biological Activity, and Molecular Modeling Investigation of New Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Human A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2002, 45, 770-780.	2.9	99
29	The ATPâ€Binding Site of Protein Kinase CK2 Holds a Positive Electrostatic Area and Conserved Water Molecules. ChemBioChem, 2007, 8, 1804-1809.	1.3	98
30	Kinase CK2 Inhibition: An Update. Current Medicinal Chemistry, 2013, 20, 671-693.	1.2	94
31	Quantitative Correlation of Solvent Polarity with the α-/310-Helix Equilibrium: A Heptapeptide Behaves as a Solvent-Driven Molecular Spring. Angewandte Chemie - International Edition, 2003, 42, 3388-3392.	7.2	91
32	Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Highly Potent and Selective Human A3Adenosine Receptor Antagonists:A Influence of the Chain at the N8Pyrazole Nitrogen. Journal of Medicinal Chemistry, 2000, 43, 4768-4780.	2.9	89
33	Deciphering the Complexity of Ligand–Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations. Journal of Chemical Information and Modeling, 2016, 56, 687-705.	2.5	88
34	Models for the active site of vanadium-dependent haloperoxidases: insight into the solution structure of peroxo vanadium compounds. Journal of Inorganic Biochemistry, 2000, 80, 41-49.	1.5	87
35	Inhibition of Protein Kinase CK2 by Condensed Polyphenolic Derivatives. An in Vitro and in Vivo Study. Biochemistry, 2004, 43, 12931-12936.	1.2	87
36	PEG–Ara-C conjugates for controlled release. European Journal of Medicinal Chemistry, 2004, 39, 123-133.	2.6	85

#	Article	IF	CITATIONS
37	Enantioselective Ti(IV) Sulfoxidation Catalysts BearingC3-Symmetric Trialkanolamine Ligands:Â Solution Speciation by1H NMR and ESI-MS Analysis. Journal of the American Chemical Society, 1999, 121, 6258-6268.	6.6	83
38	Titanium(IV)â^'(R,R,R)-Tris(2-phenylethoxy)amineâ^' Alkylperoxo Complex Mediated Oxidations:Â The Biphilic Nature of the Oxygen Transfer to Organic Sulfur Compounds. Journal of the American Chemical Society, 1997, 119, 6935-6936.	6.6	81
39	Ligand-Based Homology Modeling as Attractive Tool to Inspect GPCR Structural Plasticity. Current Pharmaceutical Design, 2006, 12, 2175-2185.	0.9	80
40	Inhibition of Protein Kinase CK2 by Anthraquinone-related Compounds. Journal of Biological Chemistry, 2003, 278, 1831-1836.	1.6	75
41	Synthesis, Biological Properties, and Molecular Modeling Investigation of the First Potent, Selective, and Water-Soluble Human A3 Adenosine Receptor Antagonist. Journal of Medicinal Chemistry, 2002, 45, 3579-3582.	2.9	74
42	Techniques: Recent developments in computer-aided engineering of GPCR ligands using the human adenosine A3 receptor as an example. Trends in Pharmacological Sciences, 2005, 26, 44-51.	4.0	72
43	Novel camptothecin derivatives as topoisomerase I inhibitors. Expert Opinion on Therapeutic Patents, 2009, 19, 555-574.	2.4	72
44	Autocorrelation of Molecular Electrostatic Potential Surface Properties Combined with Partial Least Squares Analysis as Alternative Attractive Tool to Generate Ligand-Based 3D-QSARs. Current Drug Discovery Technologies, 2005, 2, 13-21.	0.6	71
45	MMsINC: a large-scale chemoinformatics database. Nucleic Acids Research, 2009, 37, D284-D290.	6.5	71
46	Combined Target-Based and Ligand-Based Drug Design Approach as a Tool To Define a Novel 3D-Pharmacophore Model of Human A3 Adenosine Receptor Antagonists: Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives as a Key Study. Journal of Medicinal Chemistry, 2005, 48, 152-162.	2.9	69
47	Interactions of Flavones and Other Phytochemicals with Adenosine Receptors. Advances in Experimental Medicine and Biology, 2002, 505, 163-171.	0.8	69
48	1,2,4-Triazolo[4,3-a]quinoxalin-1-one Moiety as an Attractive Scaffold To Develop New Potent and Selective Human A3Adenosine Receptor Antagonists:Â Synthesis, Pharmacological, and Ligandâ^'Receptor Modeling Studies. Journal of Medicinal Chemistry, 2004, 47, 3580-3590.	2.9	67
49	Protein kinase CK2 inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2012, 22, 1081-1097.	2.4	67
50	Exploring Protein-Peptide Recognition Pathways Using a Supervised Molecular Dynamics Approach. Structure, 2017, 25, 655-662.e2.	1.6	67
51	51V-NMR investigation on the formation of peroxo vanadium complexes in aqueous solution: Some novel observations. Journal of Molecular Catalysis, 1994, 94, 323-333.	1.2	66
52	1-Substituted pyrazolo[1,5-c]quinazolines as novel Gly/NMDA receptor antagonists: Synthesis, biological evaluation, and molecular modeling study. Bioorganic and Medicinal Chemistry, 2005, 13, 5536-5549.	1.4	64
53	The versatile chemistry of peroxo complexes of vanadium, molybdenum and tungsten as oxidants of organic compounds. Journal of Physical Organic Chemistry, 1996, 9, 329-336.	0.9	60
54	How druggable is protein kinase CK2?. Medicinal Research Reviews, 2010, 30, 419-462.	5.0	60

#	Article	IF	CITATIONS
55	Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1645-1649.	2.5	60
56	Flavonoid Derivatives as Adenosine Receptor Antagonists:Â A Comparison of the Hypothetical Receptor Binding Site Based on a Comparative Molecular Field Analysis Model. Journal of Medicinal Chemistry, 1998, 41, 46-52.	2.9	59
57	Bridging Molecular Docking to Membrane Molecular Dynamics To Investigate GPCR–Ligand Recognition: The Human A _{2A} Adenosine Receptor as a Key Study. Journal of Chemical Information and Modeling, 2014, 54, 169-183.	2.5	59
58	New 2-Arylpyrazolo[3,4- <i>c</i>]quinoline Derivatives as Potent and Selective Human A ₃ Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligandâ^Receptor Modeling Studies. Journal of Medicinal Chemistry, 2007, 50, 4061-4074.	2.9	58
59	The Identification of the 2-Phenylphthalazin-1(2 <i>H</i>)-one Scaffold as a New Decorable Core Skeleton for the Design of Potent and Selective Human A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2011, 54, 2102-2113.	2.9	57
60	Chiral Resolution and Stereospecificity of 6-Phenyl-4-phenylethynyl- 1,4-dihydropyridines as Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 3055-3065.	2.9	56
61	4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as New Potent and Selective Human A3Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligandâ``Receptor Modeling Studies. Journal of Medicinal Chemistry, 2006, 49, 3916-3925.	2.9	56
62	Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Adenosine Receptor Antagonists. Influence of the N5 Substituent on the Affinity at the Human A3and A2BAdenosine Receptor Subtypes:Â A Molecular Modeling Investigation. Journal of Medicinal Chemistry, 2003, 46, 4287-4296.	2.9	55
63	Relationship between the Structure and the DNA Binding Properties of Diazoniapolycyclic Duplex- and Triplex-DNA Binders:  Efficiency, Selectivity, and Binding Mode. Biochemistry, 2007, 46, 12721-12736.	1.2	55
64	A High-Throughput Screening Identifies MICU1 Targeting Compounds. Cell Reports, 2020, 30, 2321-2331.e6.	2.9	54
65	Vanadium bromoperoxidases mimicking systems: Bromohydrins formation as evidence of the occurrence of a hypobromite-like vanadium complex. Tetrahedron Letters, 1995, 36, 2675-2678.	0.7	53
66	Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorganic and Medicinal Chemistry, 2015, 23, 4065-4071.	1.4	53
67	1,2,4-Triazolo[1,5-a]quinoxaline as a Versatile Tool for the Design of Selective Human A3 Adenosine Receptor Antagonists:  Synthesis, Biological Evaluation, and Molecular Modeling Studies of 2-(Hetero)aryl- and 2-Carboxy-Substitued Derivatives. Journal of Medicinal Chemistry, 2005, 48, 7932-7945.	2.9	52
68	Tuning the Activity of Zn(II) Complexes in DNA Cleavage: Clues for Design of New Efficient Metallo-Hydrolases. Inorganic Chemistry, 2008, 47, 5473-5484.	1.9	52
69	Molecular Modeling Studies of Human A3Adenosine Antagonists:  Structural Homology and Receptor Docking. Journal of Chemical Information and Computer Sciences, 1998, 38, 1239-1248.	2.8	51
70	Anthracyclines: recent developments in their separation and quantitation. Biomedical Applications, 2001, 764, 161-171.	1.7	51
71	2-Phenylpyrazolo[4,3- <i>d</i>]pyrimidin-7-one as a New Scaffold To Obtain Potent and Selective Human A ₃ Adenosine Receptor Antagonists: New Insights into the Receptorâ^'Antagonist Recognition. Journal of Medicinal Chemistry, 2009, 52, 7640-7652.	2.9	51
72	Prevalence, Tumorigenic Role, and Biochemical Implications of Rare <i>BRAF</i> Alterations. Thyroid, 2014, 24, 809-819.	2.4	51

#	Article	IF	CITATIONS
73	Novel point mutation in a leucine-rich repeat of the GPIb chain of the platelet von Willebrand factor receptor, GPIb/IX/V, resulting in an inherited dominant form of Bernard-Soulier syndrome affecting two unrelated families: the N41H variant. Haematologica, 2008, 93, 1743-1747.	1.7	50
74	Comparison of Multilabel and Single-Label Classification Applied to the Prediction of the Isoform Specificity of Cytochrome P450 Substrates. Journal of Chemical Information and Modeling, 2009, 49, 2588-2605.	2.5	50
75	Mechanism of Arene Hydroxylation by Vanadium Picolinato Peroxo Complexes. Journal of Organic Chemistry, 1994, 59, 6262-6267.	1.7	49
76	SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington's disease. Bioorganic and Medicinal Chemistry, 2008, 16, 5695-5703.	1.4	49
77	Swimming into peptidomimetic chemical space using pepMMsMIMIC. Nucleic Acids Research, 2011, 39, W261-W269.	6.5	49
78	Studies directed toward the prediction of the oxidative reactivity of vanadium peroxo complexes in water. Correlations between the nature of the ligands and 51V-NMR chemical shifts. Journal of Molecular Catalysis A, 1995, 104, 159-169.	4.8	48
79	A mechanistic investigation of bromoperoxidases mimicking systems. Evidence of a hypobromite-like vanadium intermediate from experimental data and ab initio calculations. Journal of Molecular Catalysis A, 1996, 113, 175-184.	4.8	48
80	Structural Investigation of the 7-Chloro-3-hydroxy-1H-quinazoline-2,4-dione Scaffold to Obtain AMPA and Kainate Receptor Selective Antagonists. Synthesis, Pharmacological, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2006, 49, 6015-6026.	2.9	48
81	Urolithin as a Converging Scaffold Linking Ellagic acid and Coumarin Analogues: Design of Potent Protein Kinase CK2 Inhibitors. ChemMedChem, 2011, 6, 2273-2286.	1.6	47
82	Ligand-Based Drug Design Methodologies in Drug Discovery Process: An Overview. Current Drug Discovery Technologies, 2006, 3, 155-165.	0.6	46
83	Pharmaceutical Perspectives of Nonlinear QSAR Strategies. Journal of Chemical Information and Modeling, 2010, 50, 961-978.	2.5	46
84	Discovery of novel A3 adenosine receptor ligands based on chromone scaffold. Biochemical Pharmacology, 2012, 84, 21-29.	2.0	46
85	Targeting the coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Scientific Reports, 2020, 10, 20927.	1.6	44
86	Nature of the Radical Intermediates in the Decomposition of Peroxovanadium Species in Protic and Aprotic Media. Inorganic Chemistry, 1994, 33, 1631-1637.	1.9	43
87	Synthesis of brominated compounds. A convenient molybdenum- catalyzed procedure inspired by the mode of action of haloperoxidases. Tetrahedron Letters, 1996, 37, 8609-8612.	0.7	42
88	Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. Journal of Computer-Aided Molecular Design, 2015, 29, 737-756.	1.3	42
89	DNA Topoisomerase II Structures and Anthracycline Activity: Insights into Ternary Complex Formation. Current Pharmaceutical Design, 2007, 13, 2766-2780.	0.9	41
90	The Significance of 2-Furyl Ring Substitution with a 2-(<i>para</i> substituted) Aryl Group in a New Series of Pyrazolo-triazolo-pyrimidines as Potent and Highly Selective hA ₃ Adenosine Receptors Antagonists: New Insights into Structureâ [^] Affinity Relationship and Receptorâ [^] Antagonist Recognition. Journal of Medicinal Chemistry, 2010, 53, 3361-3375.	2.9	40

#	Article	IF	CITATIONS
91	DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations. Molecules, 2015, 20, 9977-9993.	1.7	40
92	Advances in Computational Techniques to Study GPCR–Ligand Recognition. Trends in Pharmacological Sciences, 2015, 36, 878-890.	4.0	40
93	Interaction Model for Anthracycline Activity against DNA Topoisomerase IIâ€. Biochemistry, 2004, 43, 7503-7513.	1.2	39
94	Identification of novel protein kinase CK1 delta (CK1Î) inhibitors through structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5672-5675.	1.0	39
95	Demystifying the three dimensional structure of G protein-coupled receptors (GPCRs) with the aid of molecular modeling. Chemical Communications, 2003, , 2949.	2.2	38
96	Autocorrelation of Molecular Electrostatic Potential Surface Properties Combined with Partial Least Squares Analysis as New Strategy for the Prediction of the Activity of Human A3Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2005, 48, 5698-5704.	2.9	38
97	Highlights on the Development of A2A Adenosine Receptor Agonists and Antagonists. ChemMedChem, 2007, 2, 260-281.	1.6	38
98	Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 6086-6102.	1.4	38
99	The A ₃ adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Medicinal Research Reviews, 2013, 33, 235-335.	5.0	38
100	Fluorosulfonyl- and Bis-(β-chloroethyl)amino-phenylamino Functionalized Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine Derivatives:  Irreversible Antagonists at the Human A3 Adenosine Receptor and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2001, 44, 2735-2742.	2.9	37
101	Vanadium-Bromoperoxidase-Mimicking Systems: Direct Evidence of a Hypobromite-Like Vanadium Intermediate. European Journal of Inorganic Chemistry, 2003, 2003, 42-46.	1.0	37
102	Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Archives of Biochemistry and Biophysics, 2011, 505, 67-74.	1.4	37
103	The Dark Side of Protein Kinase CK2 Inhibition. Current Medicinal Chemistry, 2011, 18, 2867-2884.	1.2	37
104	Design, Synthesis, and Structure–Activity Relationships of Azolylmethylpyrroloquinolines as Nonsteroidal Aromatase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7536-7551.	2.9	37
105	Exploring the recognition pathway at the human A _{2A} adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics simulations. MedChemComm, 2015, 6, 1081-1085.	3.5	36
106	Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a New Scaffold To Develop Potent and Selective Human A3 Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligandâ^'Receptor Modeling Studies. Journal of Medicinal Chemistry, 2009, 52, 2407-2419.	2.9	35
107	Hydroxylation of aromatics with hydrogen peroxide catalyzed by vanadium (V) peroxocomplexes. Journal of Molecular Catalysis, 1993, 83, 107-116.	1.2	34
108	The chemistry of peroxovanadium species in aqueous solutions. Structure and reactivity of a neutral diperoxovanadium complex as provided by 51V-NMR data, ab initio calculations and kinetic results. Journal of Molecular Catalysis A, 1997, 120, 93-99.	4.8	34

#	Article	IF	CITATIONS
109	A3 adenosine receptors: Protective vs. damaging effects identified using novel agonists and antagonists. , 1998, 45, 113-124.		34
110	GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion. Proceedings of the United States of America, 2011, 108, 16283-16288.	3.3	34
111	A theoretical and experimental investigation of the electrophilic oxidation of thioethers and sulfoxides by peroxides. Tetrahedron, 1995, 51, 12363-12372.	1.0	33
112	Use of electrospray ionization mass spectrometry to characterize chiral reactive intermediates in a titanium alkoxide mediated sulfoxidation reaction. Chemical Communications, 1997, , 869-870.	2.2	33
113	Solvation, preferential solvation and complexation by the solvent of peroxovanadium complexes studied by 51V NMR spectroscopy. Correlations with the oxidative reactivity. Inorganica Chimica Acta, 1998, 272, 62-67.	1.2	33
114	2-Aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxalin-4-amines as highly potent A1 and A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2005, 13, 705-715.	1.4	33
115	Flavonoids Diosmetin and Hesperetin are Potent Inhibitors of Cytochrome P450 2C9-mediated Drug Metabolism in vitro. Drug Metabolism and Pharmacokinetics, 2010, 25, 466-476.	1.1	33
116	Novel fluorescent antagonist as a molecular probe in A3 adenosine receptor binding assays using flow cytometry. Biochemical Pharmacology, 2012, 83, 1552-1561.	2.0	33
117	Histidine-Containing Bisperoxovanadium(V) Compounds: Insight Into the Solution Structure by an ESI-MS and51V-NMR Comparative Study. European Journal of Inorganic Chemistry, 1999, 1999, 1489-1495.	1.0	32
118	The Furoxan System: Design of Selective Nitric Oxide (NO) Donor Inhibitors of COX-2 Endowed with Anti-Aggregatory and Vasodilating Activities. Chemistry and Biodiversity, 2005, 2, 886-900.	1.0	32
119	A2B Adenosine Receptor Antagonists: Recent Developments. Mini-Reviews in Medicinal Chemistry, 2005, 5, 1053-1060.	1.1	32
120	Novel Strategies for the Design of New Potent and Selective Human A3 Receptor Antagonists: An Update. Current Medicinal Chemistry, 2006, 13, 639-645.	1.2	32
121	Amide bond direction modulates G-quadruplex recognition and telomerase inhibition by 2,6 and 2,7 bis-substituted anthracenedione derivatives. Bioorganic and Medicinal Chemistry, 2008, 16, 354-361.	1.4	31
122	Prediction of the aqueous solvation free energy of organic compounds by using autocorrelation of molecular electrostatic potential surface properties combined with response surface analysis. Bioorganic and Medicinal Chemistry, 2008, 16, 5733-5742.	1.4	31
123	3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors: Molecular modeling and pharmacological studies. European Journal of Medicinal Chemistry, 2012, 54, 470-482.	2.6	31
124	Scouting Human A3 Adenosine Receptor Antagonist Binding Mode Using a Molecular Simplification Approach: From Triazoloquinoxaline to a Pyrimidine Skeleton as a Key Study. Journal of Medicinal Chemistry, 2007, 50, 6596-6606.	2.9	30
125	Linear and Nonlinear 3D-QSAR Approaches in Tandem with Ligand-Based Homology Modeling as a Computational Strategy To Depict the Pyrazolo-Triazolo-Pyrimidine Antagonists Binding Site of the Human Adenosine A _{2A} Receptor. Journal of Chemical Information and Modeling, 2008, 48, 350-363	2.5	30
126	Synthesis and Biological Evaluation of a New Series of 1,2,4-Triazolo[1,5- <i>a</i>]-1,3,5-triazines as Human A _{2A} Adenosine Receptor Antagonists with Improved Water Solubility. Journal of Medicinal Chemistry, 2011, 54, 877-889.	2.9	30

#	Article	IF	CITATIONS
127	New insight into adenosine receptors selectivity derived from a novel series of [5-substituted-4-phenyl-1,3-thiazol-2-yl] benzamides and furamides. European Journal of Medicinal Chemistry, 2013, 63, 924-934.	2.6	30
128	Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Future Medicinal Chemistry, 2017, 9, 507-523.	1.1	30
129	The application of a 3D-QSAR (autoMEP/PLS) approach as an efficient pharmacodynamic-driven filtering method for small-sized virtual library: Application to a lead optimization of a human A3 adenosine receptor antagonist. Bioorganic and Medicinal Chemistry, 2006, 14, 4923-4932.	1.4	29
130	In Silico Binding Free Energy Predictability by Using the Linear Interaction Energy (LIE) Method: Bromobenzimidazole CK2 Inhibitors as a Case Study. Journal of Chemical Information and Modeling, 2007, 47, 572-582.	2.5	29
131	Synthesis and pharmacological characterization of a new series of 5,7-disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives as adenosine receptor antagonists: A preliminary inspection of ligand–receptor recognition process. Bioorganic and Medicinal Chemistry, 2010. 18. 2524-2536.	1.4	29
132	Adenosiland: Walking through adenosine receptors landscape. European Journal of Medicinal Chemistry, 2012, 58, 248-257.	2.6	29
133	AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein–Ligand Association. ChemMedChem, 2018, 13, 522-531.	1.6	29
134	The rise of molecular simulations in fragment-based drug design (FBDD): an overview. Drug Discovery Today, 2020, 25, 1693-1701.	3.2	29
135	Correlation between one-electron reduction and oxygen-oxygen bond strength in d0 transition metal peroxo complexes. Inorganic Chemistry, 1993, 32, 5797-5799.	1.9	28
136	Direct Evidence of Solvent-Peroxovanadium Clusters by Electrospray Ionization Mass Spectrometry. European Journal of Inorganic Chemistry, 1998, 1998, 1193-1197.	1.0	28
137	Evidence for the recognition of non-nucleotide antagonists within the transmembrane domains of the human P2Y1receptor. Drug Development Research, 2002, 57, 173-181.	1.4	28
138	Application of QSAR analysis to organic anion transporting polypeptide 1a5 (Oatp1a5) substrates. Bioorganic and Medicinal Chemistry, 2005, 13, 463-471.	1.4	28
139	Fluorescent ligands for adenosine receptors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 26-36.	1.0	28
140	Phenolic 1,3â€diketones attenuate lipopolysaccharideâ€induced inflammatory response by an alternative magnesiumâ€mediated mechanism. British Journal of Pharmacology, 2017, 174, 1090-1103.	2.7	28
141	A Supervised Molecular Dynamics Approach to Unbiased Ligand–Protein Unbinding. Journal of Chemical Information and Modeling, 2020, 60, 1804-1817.	2.5	28
142	Synthesis and Biological Studies of a New Series of 5-Heteroarylcarbamoylaminopyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines as Human A3Adenosine Receptor Antagonists. Influence of the Heteroaryl Substituent on Binding Affinity and Molecular Modeling Investigations. Journal of Medicinal Chemistry, 2006, 49, 1720-1729.	2.9	27
143	Elucidation of the ribonuclease a aggregation process mediated by 3D domain swapping: A computational approach reveals possible new multimeric structures. Biopolymers, 2008, 89, 26-39.	1.2	27
144	β2-GlycoproteinÂl binds to thrombin and selectively inhibits the enzyme procoagulant functions. Journal of Thrombosis and Haemostasis, 2013, 11, 1093-1102.	1.9	27

#	Article	IF	CITATIONS
145	Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson's disease therapy. Bioorganic Chemistry, 2020, 104, 104203.	2.0	27
146	Halogen Bonds in Ligand–Protein Systems: Molecular Orbital Theory for Drug Design. Journal of Chemical Information and Modeling, 2020, 60, 1317-1328.	2.5	27
147	Mapping Drug Interactions at the Covalent Topoisomerase II-DNA Complex by Bisantrene/Amsacrine Congeners. Journal of Biological Chemistry, 1998, 273, 12732-12739.	1.6	26
148	Synthesis and Molecular Modeling Studies of Fullereneâ^'5,6,7-Trimethoxyindoleâ^'Oligonucleotide Conjugates as Possible Probes for Study of Photochemical Reactions in DNA Triple Helices. European Journal of Organic Chemistry, 2002, 2002, 405-413.	1.2	26
149	Anchimeric assistance effect on regioselective hydrolysis of branched PEGs: a mechanistic investigation. Bioorganic and Medicinal Chemistry, 2004, 12, 5031-5037.	1.4	26
150	αâ€Naphthylaminopropanâ€2â€ol Derivatives as BACE1 Inhibitors. ChemMedChem, 2008, 3, 1530-1534.	1.6	26
151	Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A2A and A3 receptor pyrazolo-triazolo-pyrimidine antagonists binding sites. Bioorganic and Medicinal Chemistry, 2009, 17, 5259-5274.	1.4	26
152	Leukaemic cells from chronic lymphocytic leukaemia patients undergo apoptosis following microtubule depolymerization and <scp>L</scp> yn inhibition by nocodazole. British Journal of Haematology, 2014, 165, 659-672.	1.2	26
153	Alternative Quality Assessment Strategy to Compare Performances of GPCR-Ligand Docking Protocols: The Human Adenosine A _{2A} Receptor as a Case Study. Journal of Chemical Information and Modeling, 2014, 54, 2243-2254.	2.5	26
154	Comparison of the Human A _{2A} Adenosine Receptor Recognition by Adenosine and Inosine: New Insight from Supervised Molecular Dynamics Simulations. ChemMedChem, 2017, 12, 1319-1326.	1.6	26
155	Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 2018, 32, 251-264.	1.3	26
156	The topoisomerase II poison clerocidin alkylates non-paired guanines of DNA: implications for irreversible stimulation of DNA cleavage. Nucleic Acids Research, 2001, 29, 4224-4230.	6.5	25
157	Ellagic Acid and Polyhydroxylated Urolithins Are Potent Catalytic Inhibitors of Human Topoisomerase II: An in Vitro Study. Journal of Agricultural and Food Chemistry, 2012, 60, 9162-9170.	2.4	25
158	Chapter 10 Molecular recognition in P2 receptors: Ligand development aided by molecular modeling and mutagenesis. Progress in Brain Research, 1999, 120, 119-132.	0.9	24
159	Indolo[2,3-b]-Quinolizinium Bromide: An Efficient Intercalator with DNA-Photodamaging Properties. ChemBioChem, 2002, 3, 550.	1.3	24
160	2-Arylpyrazolo[4,3- <i>d</i>]pyrimidin-7-amino Derivatives As New Potent and Selective Human A ₃ Adenosine Receptor Antagonists. Molecular Modeling Studies and Pharmacological Evaluation. Journal of Medicinal Chemistry, 2013, 56, 2256-2269.	2.9	24
161	Perturbation of Fluid Dynamics Properties of Water Molecules during G Protein-Coupled Receptor–Ligand Recognition: The Human A _{2A} Adenosine Receptor as a Key Study. Journal of Chemical Information and Modeling, 2014, 54, 2846-2855.	2.5	24
162	A2A and A2B adenosine receptors: The extracellular loop 2 determines high (A2A) or low affinity (A2B) for adenosine. Biochemical Pharmacology, 2020, 172, 113718.	2.0	24

#	Article	IF	CITATIONS
163	Ab Initio Calculations on Waterâ^'Peroxovanadium Clusters, VO(O2)(H2O)n+ (n = 1â^'5). Implications for the Structure in Aqueous Solution. Journal of Physical Chemistry A, 1997, 101, 4637-4640.	1.1	23
164	Peroxovanadium complexes as radical oxidants in organic solvents and in aqueous solutions. Journal of Molecular Catalysis A, 1997, 117, 139-149.	4.8	23
165	Quantitation of camptothecin and related compounds. Biomedical Applications, 2001, 764, 121-140.	1.7	23
166	Sequence-specific interactions of drugs interfering with the topoisomerase–DNA cleavage complex. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 145-154.	1.8	23
167	Mimicking Peptides… In Silico. Molecular Informatics, 2012, 31, 12-20.	1.4	23
168	Novel 3-Substituted 7-Phenylpyrrolo[3,2- <i>f</i>]quinolin-9(6 <i>H</i>)-ones as Single Entities with Multitarget Antiproliferative Activity. Journal of Medicinal Chemistry, 2015, 58, 7991-8010.	2.9	23
169	Characterization and Reactivity of Triperoxo Vanadium Complexes In Protic Solvents. European Journal of Inorganic Chemistry, 2001, 2001, 2913.	1.0	22
170	Carbazole-containing arylcarboxamides as BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6657-6661.	1.0	22
171	7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: Structural investigations at the 5-position to target human A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies. European Journal of Medicinal Chemistry, 2014, 84, 614-627.	2.6	22
172	The xylanase inhibitor <scp>TAXIâ€III</scp> counteracts the necrotic activity of a <i><scp>F</scp>usarium graminearum</i> xylanase <i>in vitro</i> and in durum wheat transgenic plants. Molecular Plant Pathology, 2015, 16, 583-592.	2.0	22
173	Synthesis, biological evaluation and molecular modeling studies of phthalazin-1(2H)-one derivatives as novel cholinesterase inhibitors. RSC Advances, 2016, 6, 46170-46185.	1.7	22
174	A Triazolotriazineâ€Based Dual GSKâ€3β/CKâ€1Î′ Ligand as a Potential Neuroprotective Agent Presenting Two Different Mechanisms of Enzymatic Inhibition. ChemMedChem, 2019, 14, 310-314.	1.6	22
175	Molecular Modeling as a Tool to Investigate Molecular Recognition in P2Y Receptors. Current Pharmaceutical Design, 2002, 8, 2401-2413.	0.9	21
176	Comparative Studies on the DNA-Binding Properties of Linear and Angular Dibenzoquinolizinium lons. Journal of Organic Chemistry, 2006, 71, 8401-8411.	1.7	21
177	Semisynthesis, Biological Activity, and Molecular Modeling Studies of C-Ring-Modified Camptothecins. Journal of Medicinal Chemistry, 2009, 52, 1029-1039.	2.9	21
178	Rethinking to riluzole mechanism of action: the molecular link among protein kinase CK1δ activity, TDP-43 phosphorylation, and amyotrophic lateral sclerosis pharmacological treatment. Neural Regeneration Research, 2019, 14, 2083.	1.6	21
179	Computationally driven discovery of SARS-CoV-2 M ^{pro} inhibitors: from design to experimental validation. Chemical Science, 2022, 13, 3674-3687.	3.7	21
180	New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents. Il Farmaco, 2000, 55, 1-5.	0.9	20

#	Article	IF	CITATIONS
181	Combining ligand-based and structure-based drug design in the virtual screening arena. Expert Opinion on Drug Discovery, 2007, 2, 37-49.	2.5	20
182	Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics. In Silico Pharmacology, 2017, 5, 16.	1.8	20
183	G protein-coupled receptors as challenging druggable targets: insights from in silico studies. New Journal of Chemistry, 2006, 30, 301.	1.4	19
184	Exploring Potency and Selectivity Receptor Antagonist Profiles Using a Multilabel Classification Approach: The Human Adenosine Receptors as a Key Study. Journal of Chemical Information and Modeling, 2009, 49, 2820-2836.	2.5	19
185	Supporting the Identification of Novel Fragment-Based Positive Allosteric Modulators Using a Supervised Molecular Dynamics Approach: A Retrospective Analysis Considering the Human A2A Adenosine Receptor as a Key Example. Molecules, 2017, 22, 818.	1.7	19
186	On the Mechanism of the Oxygen Transfer to Sulfoxides by (Peroxo)[tris(hydroxyalkyl)amine]TiIV Complexesâ^² Evidence for a Metal-Template-Assisted Process. European Journal of Organic Chemistry, 2003, 2003, 507-511.	1.2	18
187	New water soluble pyrroloquinoline derivatives as new potential anticancer agents. Bioorganic and Medicinal Chemistry, 2005, 13, 4733-4739.	1.4	18
188	Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: A complete structure–activity profile. Purinergic Signalling, 2007, 3, 183-193.	1.1	18
189	5,7-Disubstituted-[1,2,4]triazolo[1,5- a][1,3,5]triazines as pharmacological tools to explore the antagonist selectivity profiles toward adenosine receptors. European Journal of Medicinal Chemistry, 2016, 108, 529-541.	2.6	18
190	Structural refinement of pyrazolo[4,3- d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A 3 adenosine receptor. European Journal of Medicinal Chemistry, 2016, 108, 117-133.	2.6	18
191	Supervised Molecular Dynamics (SuMD) Approaches in Drug Design. Methods in Molecular Biology, 2018, 1824, 287-298.	0.4	18
192	Deciphering the Molecular Recognition Mechanism of Multidrug Resistance Staphylococcus aureus NorA Efflux Pump Using a Supervised Molecular Dynamics Approach. International Journal of Molecular Sciences, 2019, 20, 4041.	1.8	18
193	Re-Exploring the Ability of Common Docking Programs to Correctly Reproduce the Binding Modes of Non-Covalent Inhibitors of SARS-CoV-2 Protease Mpro. Pharmaceuticals, 2022, 15, 180.	1.7	18
194	Tandem 3D-QSARs Approach as a Valuable Tool To Predict Binding Affinity Data:  Design of New Gly/NMDA Receptor Antagonists as a Key Study. Journal of Chemical Information and Modeling, 2007, 47, 1913-1922.	2.5	17
195	Rational Design, Synthesis, and DNA Binding Properties of Novel Sequenceâ€Selective Peptidyl Congeners of Ametantrone. ChemMedChem, 2010, 5, 1080-1091.	1.6	17
196	Inhibition of Cytochrome P450 2C8-mediated Drug Metabolism by the Flavonoid Diosmetin. Drug Metabolism and Pharmacokinetics, 2011, 26, 559-568.	1.1	17
197	Exploring the Directionality of 5-Substitutions in a New Series of 5-Alkylaminopyrazolo[4,3- <i>e</i>]1,2,4-triazolo[1,5- <i>c</i>]pyrimidine as a Strategy To Design Novel Human A ₃ Adenosine Receptor Antagonists Journal of Medicinal Chemistry, 2012, 55, 9654-9668.	2.9	17
198	Molecular Docking Methodologies. Methods in Molecular Biology, 2013, 924, 339-360.	0.4	17

#	Article	IF	CITATIONS
199	A Deep-Learning Approach toward Rational Molecular Docking Protocol Selection. Molecules, 2020, 25, 2487.	1.7	17
200	DNA-Interactive Anticancer Aza-Anthrapyrazoles: Biophysical and Biochemical Studies Relevant to the Mechanism of Action. Molecular Pharmacology, 2001, 59, 96-103.	1.0	16
201	Antitumor AZA-anthrapyrazoles: biophysical and biochemical studies on 8- and 9-aza regioisomers. Biochemical Pharmacology, 2004, 67, 631-642.	2.0	16
202	Revisiting a Receptor-Based Pharmacophore Hypothesis for Human A _{2A} Adenosine Receptor Antagonists. Journal of Chemical Information and Modeling, 2013, 53, 1620-1637.	2.5	16
203	Targeting Protein Kinase CK1δ with Riluzole: Could It Be One of the Possible Missing Bricks to Interpret Its Effect in the Treatment of ALS from a Molecular Point of View?. ChemMedChem, 2018, 13, 2601-2605.	1.6	16
204	Exploring the RNA-Recognition Mechanism Using Supervised Molecular Dynamics (SuMD) Simulations: Toward a Rational Design for Ribonucleic-Targeting Molecules?. Frontiers in Chemistry, 2020, 8, 107.	1.8	16
205	A Computational Workflow for the Identification of Novel Fragments Acting as Inhibitors of the Activity of Protein Kinase CK11´. International Journal of Molecular Sciences, 2021, 22, 9741.	1.8	15
206	From the Wuhan-Hu-1 strain to the XD and XE variants: is targeting the SARS-CoV-2 spike protein still a pharmaceutically relevant option against COVID-19?. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1704-1714.	2.5	15
207	Acute In Vitro Effects of Dronedarone, an Iodine-Free Derivative, and Amiodarone, on the Rabbit Sinoatrial Node Automaticity: A Comparative Study. Journal of Cardiovascular Pharmacology and Therapeutics, 2007, 12, 248-257.	1.0	14
208	Diazoniapolycyclic Ions Inhibit the Activity of Topoisomeraseâ€I and the Growth of Certain Tumor Cell Lines. ChemMedChem, 2008, 3, 1671-1676.	1.6	14
209	NMRâ€Assisted Molecular Docking Methodologies. Molecular Informatics, 2015, 34, 513-525.	1.4	14
210	The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3- <i>d</i>]pyrimidine core in affecting adenosine A ₁ and A _{2A} receptor affinity and selectivity profiles. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 248-263.	2.5	14
211	Can We Still Trust Docking Results? An Extension of the Applicability of DockBench on PDBbind Database. International Journal of Molecular Sciences, 2019, 20, 3558.	1.8	14
212	Revisiting the Allosteric Regulation of Sodium Cation on the Binding of Adenosine at the Human A2A Adenosine Receptor: Insights from Supervised Molecular Dynamics (SuMD) Simulations. Molecules, 2019, 24, 2752.	1.7	14
213	DNA-Binding Preferences of Bisantrene Analogues: Relevance to the Sequence Specificity of Drug-Mediated Topoisomerase II Poisoning. Molecular Pharmacology, 1998, 54, 1036-1045.	1.0	13
214	Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function. Biochemical and Biophysical Research Communications, 2014, 450, 1606-1611.	1.0	13
215	Scaffold Decoration at Positions 5 and 8 of 1,2,4-Triazolo[1,5- <i>c</i>]Pyrimidines to Explore the Antagonist Profiling on Adenosine Receptors: A Preliminary Structure–Activity Relationship Study. Journal of Medicinal Chemistry, 2014, 57, 6210-6225.	2.9	13
216	DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015. Journal of Computer-Aided Molecular Design, 2016, 30, 773-789.	1.3	13

#	Article	IF	CITATIONS
217	Synthesis, structure-activity relationships and biological evaluation ofÂ7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. European Journal of Medicinal Chemistry, 2017, 127, 643-660.	2.6	13
218	[1,2,4]Triazolo[1,5-c]pyrimidines as adenosine receptor antagonists: Modifications at the 8 position to reach selectivity towards A3 adenosine receptor subtype. European Journal of Medicinal Chemistry, 2018, 157, 837-851.	2.6	13
219	Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines and Structurally Simplified Analogs. Chemistry and SAR Profile as Adenosine Receptor Antagonists. Current Topics in Medicinal Chemistry, 2016, 16, 3224-3257.	1.0	13
220	A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallographica Section D: Structural Biology, 2022, 78, 363-378.	1.1	13
221	Metabolism of 2-hydroxy-3-deoxyestradiol by rat liver microsomes. Biochemical Pharmacology, 1977, 26, 769-773.	2.0	12
222	Carboxylation-dependent conformational changes of human osteocalcin. Frontiers in Bioscience - Landmark, 2014, 19, 1105.	3.0	12
223	Inspecting the Mechanism of Fragment Hits Binding on SARSâ€CoVâ€2 M ^{pro} by Using Supervised Molecular Dynamics (SuMD) Simulations. ChemMedChem, 2021, 16, 2075-2081.	1.6	12
224	Pyrazoloquinazoline Tricyclic System as Novel Scaffold to Design New Kinase CK2 Inhibitors. Letters in Drug Design and Discovery, 2006, 3, 281-284.	0.4	11
225	Support Vector Machine (SVM) as Alternative Tool to Assign Acute Aquatic Toxicity Warning Labels to Chemicals. Molecular Informatics, 2010, 29, 51-64.	1.4	11
226	Does the combination of optimal substitutions at the C2-, N5- and N8-positions of the pyrazolo-triazolo-pyrimidine scaffold guarantee selective modulation of the human A3 adenosine receptors?. Bioorganic and Medicinal Chemistry, 2011, 19, 6120-6134.	1.4	11
227	In silico investigation of PHDâ€3 specific HIF1â€Î± proline 567 hydroxylation: A new player in the VHL/HIFâ€1α interaction pathway?. FEBS Letters, 2013, 587, 2996-3001.	1.3	11
228	Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Medicinal Chemistry, 2019, 11, 599-615.	1.1	11
229	Conjugable A3 adenosine receptor antagonists for the development of functionalized ligands and their use in fluorescent probes. European Journal of Medicinal Chemistry, 2020, 186, 111886.	2.6	11
230	Photophysical Properties of the Lowest Excited Singlet and Triplet States of Thio- and Seleno-psoralens. Photochemistry and Photobiology, 2000, 71, 506.	1.3	11
231	Implementing a Scoring Function Based on Interaction Fingerprint for Autogrow4: Protein Kinase CK1δ as a Case Study. Frontiers in Molecular Biosciences, 0, 9, .	1.6	11
232	RIBOSE MODIFIED NUCLEOSIDES AND NUCLEOTIDES AS LIGANDS FOR PURINE RECEPTORS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 333-341.	0.4	10
233	Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. Journal of Supramolecular Chemistry, 2002, 2, 327-334.	0.4	10
234	Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes. Purinergic Signalling, 2008, 4, 39-46.	1.1	10

#	Article	IF	CITATIONS
235	Human A3 Adenosine Receptor as Versatile G Protein-Coupled Receptor Example to Validate the Receptor Homology Modeling Technology. Current Pharmaceutical Design, 2009, 15, 4069-4084.	0.9	10
236	Implementing the "Best Template Searching―tool into Adenosiland platform. In Silico Pharmacology, 2013, 1, 25.	1.8	10
237	Evaluating the effects of fluorine on biological properties and metabolic stability of some antitubulin 3-substituted 7-phenyl-pyrroloquinolinones. European Journal of Medicinal Chemistry, 2019, 178, 297-314.	2.6	10
238	HT-SuMD: making molecular dynamics simulations suitable for fragment-based screening. A comparative study with NMR. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1-14.	2.5	10
239	Discovery of HIV-1 Integrase Inhibitors through a Novel Combination of Ligand and Structure-based Drug Design. Medicinal Chemistry, 2005, 1, 263-275.	0.7	10
240	ATP Non-Competitive Ser/Thr Kinase Inhibitors as Potential Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 778-786.	0.9	10
241	Ribose and Non-Ribose A2A Adenosine Receptor Agonists: Do They Share the Same Receptor Recognition Mechanism?. Biomedicines, 2022, 10, 515.	1.4	10
242	Interactions between DNA and benzo- and tetrahydrobenzofurocoumarins: thermodynamic and molecular modeling studies. Il Farmaco, 2000, 55, 276-286.	0.9	9
243	2-Hydroxy-3-carboxy-dihydrocinnamic acid: Complexation properties towards aluminium(III) and iron(III). Polyhedron, 2007, 26, 3419-3427.	1.0	9
244	Protein Kinase CK2 Inhibitors: Emerging Anticancer Therapeutic Agents?. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 798-806.	0.9	9
245	Reactivity of clerocidin towards adenine: implications for base-modulated DNA damage. Organic and Biomolecular Chemistry, 2009, 7, 976.	1.5	9
246	Sulfonamido-derivatives of unsubstituted carbazoles as BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4812-4816.	1.0	9
247	Could the presence of sodium ion influence the accuracy and precision of the ligand-posing in the human A2A adenosine receptor orthosteric binding site using a molecular docking approach? Insights from Dockbench. Journal of Computer-Aided Molecular Design, 2018, 32, 1337-1346.	1.3	9
248	Pyrazolo[4,3- <i>e</i>][1,2,4]triazolo[1,5- <i>c</i>]pyrimidines to develop functionalized ligands to target adenosine receptors: fluorescent ligands as an example. MedChemComm, 2019, 10, 1094-1108.	3.5	9
249	Scaffold Repurposing of in-House Chemical Library toward the Identification of New Casein Kinase 1 δ Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1168-1174.	1.3	9
250	Developing novel classes of protein kinase CK1δ inhibitors by fusing [1,2,4]triazole with different bicyclic heteroaromatic systems. European Journal of Medicinal Chemistry, 2021, 216, 113331.	2.6	9
251	A versatile synthesis of the 1,4-dihydroxynaphthoquinone nucleus. Tetrahedron Letters, 2000, 41, 6631-6634.	0.7	8
252	Targeting tubulin polymerization by novel 7-aryl-pyrroloquinolinones: Synthesis, biological activity and SARs. European Journal of Medicinal Chemistry, 2018, 143, 244-258.	2.6	8

#	Article	IF	CITATIONS
253	Sodium or Not Sodium: Should Its Presence Affect the Accuracy of Pose Prediction in Docking GPCR Antagonists?. Pharmaceuticals, 2022, 15, 346.	1.7	8
254	Synthesis, biological studies and molecular modeling investigation of 1,3-dimethyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-tetrahydro [1,2,4]-triazolo [3,4-f]-purines as potential adenosine receptor antagonists. Il Farmaco, 2005, 60, 299-306.	0.9	7
255	Synthesis, biological and modeling studies of 1,3-di-n-propyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-tetrahydro [1,2,4]-triazolo [3,4-f]-purines as adenosine receptor antagonists. Il Farmaco, 2005, 60, 643-651.	0.9	7
256	A novel glucosyltransferase from Catharanthus roseus cell suspensions. Process Biochemistry, 2010, 45, 655-659.	1.8	7
257	BACE1 inhibitory activities of enantiomerically pure, variously substituted N-(3-(4-benzhydrylpiperazin-1-yl)-2-hydroxypropyl) arylsulfonamides. Bioorganic and Medicinal Chemistry, 2010, 18, 7991-7996.	1.4	7
258	Receptor-Driven Identification of Novel Human A3 Adenosine Receptor Antagonists as Potential Therapeutic Agents. Methods in Enzymology, 2010, 485, 225-244.	0.4	7
259	ALK Kinase Domain Mutations in Primary Anaplastic Large Cell Lymphoma: Consequences on NPM-ALK Activity and Sensitivity to Tyrosine Kinase Inhibitors. PLoS ONE, 2015, 10, e0121378.	1.1	7
260	Could Adenosine Recognize its Receptors with a Stoichiometry Other than 1 : 1?. Molecular Informatics, 2018, 37, e1800009.	1.4	7
261	A Comparison in the Use of the Crystallographic Structure of the Human A1 or the A2A Adenosine Receptors as a Template for the Construction of a Homology Model of the A3 Subtype. Applied Sciences (Switzerland), 2019, 9, 821.	1.3	7
262	1-Thiopsoralen, a new photobiologically active heteropsoralen. Photophysical, photochemical and computer aided studies. Il Farmaco, 1997, 52, 645-52.	0.9	7
263	Isolation and characterization of a Golgi-rich fraction from the Harding-Passey mouse melanoma Tohoku Journal of Experimental Medicine, 1978, 126, 63-70.	0.5	6
264	1-Thioangelicin: crystal structure, computer-aided studies and photobiological activity. Il Farmaco, 2004, 59, 125-132.	0.9	6
265	Response Surface Analysis as Alternative 3D-QSAR Tool: Human A3 Adenosine Receptor Antagonists as a Key Study. Letters in Drug Design and Discovery, 2007, 4, 122-127.	0.4	6
266	A novel splicing variant encoding putative catalytic α subunit of maize protein kinase CK2. Physiologia Plantarum, 2009, 136, 251-263.	2.6	6
267	Structure–Activity Relationship Study of 16 aâ€Thiocamptothecins: an Integrated In Vitro and In Silico Approach. ChemMedChem, 2010, 5, 2006-2015.	1.6	6
268	The Role of the N-Terminal Domain in the Regulation of the "Constitutively Active―Conformation of Protein Kinase CK2α: Insight from a Molecular Dynamics Investigation. ChemMedChem, 2011, 6, 1207-1216.	1.6	6
269	Functional Significance of the Novel H-RAS Gene Mutation M72I in a Patient with Medullary Thyroid Cancer. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, 546-550.	0.6	6
270	Editorial: Neuroinflammation and Its Resolution: From Molecular Mechanisms to Therapeutic Perspectives. Frontiers in Pharmacology, 2020, 11, 480.	1.6	6

#	Article	IF	CITATIONS
271	The Influence of the 1-(3-Trifluoromethyl-Benzyl)-1H-Pyrazole-4-yl Moiety on the Adenosine Receptors Affinity Profile of Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Derivatives. PLoS ONE, 2015, 10, e0143504.	1.1	6
272	Scouting Novel Protein Kinase A (PKA) Inhibitors by Using a Consensus Docking-Based Virtual Screening Approach. Letters in Drug Design and Discovery, 2009, 6, 327-336.	0.4	6
273	Computational Strategies to Identify New Drug Candidates against Neuroinflammation. Current Medicinal Chemistry, 2022, 29, 4756-4775.	1.2	6
274	The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective?. International Journal of Molecular Sciences, 2022, 23, 4504.	1.8	6
275	Structurally related nucleotides as selective agonists and antagonists at P2Y1 receptors. Il Farmaco, 2001, 56, 71-75.	0.9	5
276	Conjugates between minor groove binders and Zn(II)-tach complexes: Synthesis, characterization, and interaction with plasmid DNA. Tetrahedron, 2017, 73, 3014-3024.	1.0	5
277	Synthesis and preliminary structure-activity relationship study of 2-aryl-2 <i>H</i> -pyrazolo[4,3- <i>c</i>]quinolin-3-ones as potential checkpoint kinase 1 (Chk1) inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 171-183.	2.5	5
278	Coupling Supervised Molecular Dynamics (SuMD) with Entropy Estimations To Shine Light on the Stability of Multiple Binding Sites. ACS Medicinal Chemistry Letters, 2019, 10, 444-449.	1.3	5
279	New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations. Biomolecules, 2020, 10, 732.	1.8	5
280	Shedding Light on the Molecular Recognition of Sub-Kilodalton Macrocyclic Peptides on Thrombin by Supervised Molecular Dynamics. Frontiers in Molecular Biosciences, 2021, 8, 707661.	1.6	5
281	Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors. Bioorganic Chemistry, 2021, 115, 105203.	2.0	5
282	The Effect of C-Phycocyanin on Microglia Activation Is Mediated by Toll-like Receptor 4. International Journal of Molecular Sciences, 2022, 23, 1440.	1.8	5
283	New benzoquinolizin-5-one derivatives as furocoumarin analogs: DNA-interactions and molecular modeling studies. Il Farmaco, 1999, 54, 551-561.	0.9	4
284	Designing a ligand for pharmaceutical purposes. Expert Opinion on Drug Discovery, 2008, 3, 579-590.	2.5	4
285	ClickMD: an intuitive web-oriented molecular dynamics platform. Future Medicinal Chemistry, 2011, 3, 923-931.	1.1	4
286	Inhibitory effects of glycosaminoglycans on basal and stimulated transforming growth factor-Â1 expression in mesangial cells: biochemical and structural considerations. Glycobiology, 2011, 21, 1029-1037.	1.3	4
287	A cluster of factor XIâ€deficient patients due to a new mutation (Ile 436 Lys) in northeastern Italy*. European Journal of Haematology, 2012, 88, 229-236	1.1	4
288	Novel insights on the <scp>DNA</scp> interaction of calicheamicin Î ³ ₁ ^I . Biopolymers, 2015, 103, 449-459.	1.2	4

#	Article	IF	CITATIONS
289	In Silico 3D Modeling of Binding Activities. Methods in Molecular Biology, 2016, 1425, 23-35.	0.4	4
290	Discovery of 2-aminoimidazole and 2-amino imidazolyl-thiazoles as non-xanthine human adenosine A3receptor antagonists: SAR and molecular modeling studies. MedChemComm, 2018, 9, 676-684.	3.5	4
291	Targeting G Proteinâ€Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem, 2020, 15, 1909-1920.	1.6	4
292	Comparing Fragment Binding Poses Prediction Using HSP90 as a Key Study: When Bound Water Makes the Difference. Molecules, 2020, 25, 4651.	1.7	4
293	Bat coronaviruses related to SARS-CoV-2: what about their 3CL proteases (MPro)?. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1077-1082.	2.5	4
294	Dissecting Reactivity of Clerocidin toward Common Buffer Systems by Means of Selected Drug Analogues. Chemical Research in Toxicology, 2005, 18, 35-40.	1.7	3
295	New Trends in Inspecting GPCRâ€ligand Recognition Process: the Contribution of the Molecular Modeling Section (MMS) at the University of Padova. Molecular Informatics, 2016, 35, 440-448.	1.4	3
296	Matrix metalloprotease 3 (MMP3) inhibition effect of a viscosupplement based on a hyaluronic acid amide derivative (HYADD4). Osteoarthritis and Cartilage, 2018, 26, S286-S287.	0.6	3
297	Amphiphilic peptide-based MMP3 inhibitors for intra-articular treatment of knee OA. Bioorganic and Medicinal Chemistry, 2021, 38, 116132.	1.4	3
298	A Novel Generalized 3Dâ€QSAR Model of Camptothecin Analogs. Molecular Informatics, 2011, 30, 927-938.	1.4	2
299	MMsDusty: an Alternative InChIâ€Based Tool to Minimize Chemical Redundancy. Molecular Informatics, 2013, 32, 681-684.	1.4	2
300	On the mechanism of tumor cell entry of aloeâ€emodin, a natural compound endowed with anticancer activity. International Journal of Cancer, 2021, 149, 1129-1136.	2.3	2
301	Tetralogy of fallot in a blastocystic implantation. American Journal of Cardiology, 1987, 60, 1206.	0.7	1
302	MMsINC®: A New Public Large-Scale Chemoinformatics Database System. , 2008, , .		1
303	PCA-Based Representations of Graphs for Prediction in QSAR Studies. Lecture Notes in Computer Science, 2009, , 105-114.	1.0	1
304	Conformational Changes of Congenital FVII Variants with Defective Binding to Tissue Factor ARG304GLN (FVII Padua), ARG 304TRP (FVII Nagoya) and ARG79GLN (FVII Shinjo or Tondabayashi). International Journal of Biomedical Science, 2013, 9, 185-93.	0.5	1
305	ELECTROPHORETIC PROFILE OF TYROSINASE TREATED WITH NEURAMINIDASE IN VARIOUS SUBCELLULAR FRACTIONS FROM MOUSE MELANOMA*. Journal of Dermatology, 1979, 6, 125-127.	0.6	0
306	Potent and Selective A2A Adenosine Receptor Antagonists: Recent Improvements. Frontiers in Drug Design and Discovery, 2005, 2, 49-62.	0.3	0

#	Article	IF	CITATIONS
307	Synthesis, Biological Studies and Molecular Modeling Investigation of 1,3-Dimethyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-Tetrahydro-[1,2,4]-triazolo-[3,4-f]-purines as Potential Adenosine Receptor Antagonists ChemInform, 2005, 36, no.	0.1	0
308	Synthesis, Biological and Modeling Studies of 1,3-Di-n-propyl-2,4-dioxo-6-methyl-8-(substituted) 1,2,3,4-Tetrahydro[1,2,4]-triazolo[3,4-f]-purines as Adenosine Receptor Antagonists ChemInform, 2006, 37, no.	0.1	0
309	Editorial [Hot Topic: Computational Applications in Medicinal Chemistry Executive (Editor: Stefano) Tj ETQq1 1 C).784314 0.9	rgBT /Overlo
310	Editorial [Hot topic: In Silico Approaches in G Protein-Coupled Receptors (GPCRs) Drug Discovery: Quo Vadis? (Executive Editor: Stefano Moro)]. Current Pharmaceutical Design, 2009, 15, 3992-3993.	0.9	0
311	Fingerprint-based detection of acute aquatic toxicity. Journal of Cheminformatics, 2010, 2, .	2.8	0
312	Potent and selective A ₃ adenosine receptor antagonists bearing aminoesters as heterobifunctional moieties. RSC Medicinal Chemistry, 2021, 12, 254-262.	1.7	0
313	Molecular Modeling and Reengineering of A3 Adenosine Receptors. , 2010, , 149-161.		0
314	Abstract 3034: Hsp90-dependent stabilization of active NPM-ALK kinase: Structural insights by mutagenesis of the ALK catalytic domain. , 2012, , .		0