David A Ratkowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5991247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation studies comparing fixed effect and mixed models in data sets with multiple measurements in individual sampling units. Journal of Statistical Computation and Simulation, 2022, 92, 81-100.	1.2	3
2	Phyllode inoculation provides a rapid protocol for preliminary screening of Acacia species for tolerance to Ceratocystis wilt and canker disease. European Journal of Plant Pathology, 2022, 163, 321-339.	1.7	1
3	Factors controlling individual branch development during early growth of an experimental plantation of Eucalyptus pilularis in sub-tropical Australia. Trees - Structure and Function, 2021, 35, 395-405.	1.9	7
4	Pathogen growth when implementing â€~Time as a Public Health Control'. Food Microbiology, 2021, 96, 103718.	4.2	1
5	Modelling viability of Listeria monocytogenes in paneer. Food Microbiology, 2021, 97, 103738.	4.2	5
6	A General Model for Describing the Ovate Leaf Shape. Symmetry, 2021, 13, 1524.	2.2	7
7	Application of an Ovate Leaf Shape Model to Evaluate Leaf Bilateral Asymmetry and Calculate Lamina Centroid Location. Frontiers in Plant Science, 2021, 12, 822907.	3.6	7
8	Does the law of diminishing returns in leaf scaling apply to vines? – Evidence from 12 species of climbing plants. Global Ecology and Conservation, 2020, 21, e00830.	2.1	22
9	Effect of glucose, pH and lactic acid on Carnobacterium maltaromaticum, Brochothrix thermosphacta and Serratia liquefaciens within a commercial heat-shrunk vacuum-package film. Food Microbiology, 2020, 91, 103515.	4.2	12
10	The Generalized Gielis Geometric Equation and Its Application. Symmetry, 2020, 12, 645.	2.2	17
11	Ease of Access to An Alternative Food Source Enables Wallabies to Strip Bark in Tasmanian Pinus radiata Plantations. Forests, 2020, 11, 387.	2.1	3
12	The scaling relationships of leaf biomass vs. leaf surface area of 12 bamboo species. Global Ecology and Conservation, 2019, 20, e00793.	2.1	25
13	Effects of Constant and Fluctuating Temperatures on Development Rates and Longevity of Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Journal of Economic Entomology, 2019, 112, 1062-1072.	1.8	39
14	Maximising growth and sawlog production from Acacia hybrid plantations in Vietnam. New Forests, 2019, 50, 785-804.	1.7	5
15	The Influence of Temperature Variation on Life History Parameters and Thermal Performance Curves of Tamarixia radiata (Hymenoptera: Eulophidae), a Parasitoid of the Asian Citrus Psyllid (Hemiptera:) Tj ETQq1 1	0.7 88 314	rg ₿1 /Overlo
16	Influence of the physical dimension of leaf size measures on the goodness of fit for Taylor's power law using 101 bamboo taxa. Global Ecology and Conservation, 2019, 19, e00657.	2.1	6
17	Leaf area–length allometry and its implications in leaf shape evolution. Trees - Structure and Function, 2019, 33, 1073-1085.	1.9	43
18	Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants?. Forests, 2019, 10, 256.	2.1	82

DAVID A RATKOWSKY

#	Article	IF	CITATIONS
19	Woodâ€rotting basidiomycetes are a minor component of fungal communities associated with <i>Acacia</i> hybrid trees grown for sawlogs in South Vietnam. Forest Pathology, 2019, 49, e12498.	1.1	3
20	Proportional Relationship between Leaf Area and the Product of Leaf Length and Width of Four Types of Special Leaf Shapes. Forests, 2019, 10, 178.	2.1	33
21	The maximum growth rate of life on Earth. International Journal of Astrobiology, 2018, 17, 17-33.	1.6	10
22	Association of <i>Eucalyptus globulus</i> leaf anatomy with susceptibility to <i>Teratosphaeria</i> leaf disease. Forest Pathology, 2018, 48, e12395.	1.1	14
23	A General Leaf Area Geometric Formula Exists for Plants—Evidence from the Simplified Gielis Equation. Forests, 2018, 9, 714.	2.1	63
24	Contribution of Harvest Residues to Nutrient Cycling in a Tropical Acacia mangium Willd. Plantation. Forests, 2018, 9, 577.	2.1	15
25	Taylor's Power Law for Leaf Bilateral Symmetry. Forests, 2018, 9, 500.	2.1	17
26	A Simple Method for Measuring the Bilateral Symmetry of Leaves. Symmetry, 2018, 10, 118.	2.2	20
27	Comparison of two ontogenetic growth equations for animals and plants. Ecological Modelling, 2017, 349, 1-10.	2.5	16
28	Ganoderma basidiospore germination responses as affected by spore density, temperature and nutrient media. Tropical Plant Pathology, 2017, 42, 328-338.	1.5	6
29	Comparison of five methods for parameter estimation under Taylor's power law. Ecological Complexity, 2017, 32, 121-130.	2.9	17
30	Empirical Model With Excellent Statistical Properties for Describing Temperature-Dependent Developmental Rates of Insects and Mites. Annals of the Entomological Society of America, 2017, 110, 302-309.	2.5	39
31	An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae. Mycorrhiza, 2017, 27, 67-74.	2.8	11
32	Effect of Environmental Factors on Intra-Specific Inhibitory Activity of Carnobacterium maltaromaticum. Microorganisms, 2017, 5, 59.	3.6	5
33	Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.). Scientific Reports, 2016, 6, 25586.	3.3	29
34	Modelling the combined effect of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in high moisture processed cheese analogue. International Dairy Journal, 2016, 57, 62-71.	3.0	16
35	Choosing the number of principal coordinates when using CAP, the canonical analysis of principal coordinates. Austral Ecology, 2016, 41, 842-851.	1.5	6
36	Modelling the combined effects of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in a controlled environment (nutrient broth). Food Control, 2016, 62, 32-43.	5.5	18

DAVID A RATKOWSKY

#	Article	IF	CITATIONS
37	The Biokinetic Spectrum for Temperature. PLoS ONE, 2016, 11, e0153343.	2.5	52
38	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	12.6	2,513
39	The taxonomic foundation, species circumscription and continental endemisms of <i>Singerocybe</i> : evidence from morphological and molecular data. Mycologia, 2014, 106, 1015-1026.	1.9	16
40	Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates. PLoS ONE, 2014, 9, e96100.	2.5	39
41	Predictive microbiology theory and application: Is it all about rates?. Food Control, 2013, 29, 290-299.	5.5	49
42	Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. Forest Ecology and Management, 2013, 302, 329-337.	3.2	48
43	Comparative evaluation of a new lactation curve model for pasture-based Holstein-Friesian dairy cows. Journal of Dairy Science, 2012, 95, 5344-5356.	3.4	17
44	Universality of Thermodynamic Constants Governing Biological Growth Rates. PLoS ONE, 2012, 7, e32003.	2.5	66
45	The ecology and diversity of wood-inhabiting macrofungi in a native Eucalyptus obliqua forest of southern Tasmania, Australia. Fungal Ecology, 2011, 4, 56-67.	1.6	31
46	Diversity and phenology of the macrofungal assemblages supported by litter in a tall, wet Eucalyptus obliqua forest inÂsouthern Tasmania, Australia. Fungal Ecology, 2011, 4, 68-75.	1.6	9
47	Diversity and ecology of epigeous ectomycorrhizal macrofungal assemblages in a native wet eucalypt forest in Tasmania, Australia. Fungal Ecology, 2011, 4, 290-298.	1.6	11
48	Some comments on Huang, L. (2010). Growth kinetics of Escherichia coli O157: H7 in mechanically-tenderized beef. International Journal of Food Microbiology, 140: 40–48. International Journal of Food Microbiology, 2011, 147, 78-80.	4.7	15
49	Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. Journal of Theoretical Biology, 2005, 233, 351-362.	1.7	146
50	Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 2003, 82, 33-43.	4.7	97
51	Some examples of, and some problems with, the use of nonlinear logistic regression in predictive food microbiology. International Journal of Food Microbiology, 2002, 73, 119-125.	4.7	37
52	Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear logistic regression. International Journal of Food Microbiology, 2000, 61, 159-167.	4.7	83
53	Growth Limits of Listeria monocytogenes as a Function of Temperature, pH, NaCl, and Lactic Acid. Applied and Environmental Microbiology, 2000, 66, 4979-4987.	3.1	217
54	Modelling the Growth Limits (Growth/No Growth Interface) of <i>Escherichia coli</i> as a Function of Temperature, pH, Lactic Acid Concentration, and Water Activity. Applied and Environmental Microbiology, 1998, 64, 1773-1779.	3.1	191

#	Article	IF	CITATIONS
55	Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 1983, 154, 1222-1226.	2.2	806
56	Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 1982, 149, 1-5.	2.2	1,103
57	Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale. Journal of Forestry Research, 0, , 1.	3.6	5