David A Ratkowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5991247/publications.pdf

Version: 2024-02-01

57 papers

6,215 citations

279487 23 h-index 54 g-index

58 all docs 58 docs citations

58 times ranked 7664 citing authors

#	Article	IF	CITATIONS
1	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	6.0	2,513
2	Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 1982, 149, 1-5.	1.0	1,103
3	Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 1983, 154, 1222-1226.	1.0	806
4	Growth Limits of Listeria monocytogenes as a Function of Temperature, pH, NaCl, and Lactic Acid. Applied and Environmental Microbiology, 2000, 66, 4979-4987.	1.4	217
5	Modelling the Growth Limits (Growth/No Growth Interface) of <i>Escherichia coli</i> as a Function of Temperature, pH, Lactic Acid Concentration, and Water Activity. Applied and Environmental Microbiology, 1998, 64, 1773-1779.	1.4	191
6	Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. Journal of Theoretical Biology, 2005, 233, 351-362.	0.8	146
7	Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 2003, 82, 33-43.	2.1	97
8	Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear logistic regression. International Journal of Food Microbiology, 2000, 61, 159-167.	2.1	83
9	Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants?. Forests, 2019, 10, 256.	0.9	82
10	Universality of Thermodynamic Constants Governing Biological Growth Rates. PLoS ONE, 2012, 7, e32003.	1.1	66
11	A General Leaf Area Geometric Formula Exists for Plantsâ€"Evidence from the Simplified Gielis Equation. Forests, 2018, 9, 714.	0.9	63
12	The Biokinetic Spectrum for Temperature. PLoS ONE, 2016, 11, e0153343.	1.1	52
13	Predictive microbiology theory and application: Is it all about rates?. Food Control, 2013, 29, 290-299.	2.8	49
14	Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. Forest Ecology and Management, 2013, 302, 329-337.	1.4	48
15	Leaf area–length allometry and its implications in leaf shape evolution. Trees - Structure and Function, 2019, 33, 1073-1085.	0.9	43
16	The Influence of Temperature Variation on Life History Parameters and Thermal Performance Curves of Tamarixia radiata (Hymenoptera: Eulophidae), a Parasitoid of the Asian Citrus Psyllid (Hemiptera:) Tj ETQq0 0	0 r gB F/0v	verløick 10 Tf 5
17	Empirical Model With Excellent Statistical Properties for Describing Temperature-Dependent Developmental Rates of Insects and Mites. Annals of the Entomological Society of America, 2017, 110, 302-309.	1.3	39
18	Effects of Constant and Fluctuating Temperatures on Development Rates and Longevity of Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Journal of Economic Entomology, 2019, 112, 1062-1072.	0.8	39

#	Article	IF	CITATIONS
19	Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates. PLoS ONE, 2014, 9, e96100.	1.1	39
20	Some examples of, and some problems with, the use of nonlinear logistic regression in predictive food microbiology. International Journal of Food Microbiology, 2002, 73, 119-125.	2.1	37
21	Proportional Relationship between Leaf Area and the Product of Leaf Length and Width of Four Types of Special Leaf Shapes. Forests, 2019, 10, 178.	0.9	33
22	The ecology and diversity of wood-inhabiting macrofungi in a native Eucalyptus obliqua forest of southern Tasmania, Australia. Fungal Ecology, 2011, 4, 56-67.	0.7	31
23	Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.). Scientific Reports, 2016, 6, 25586.	1.6	29
24	The scaling relationships of leaf biomass vs. leaf surface area of 12 bamboo species. Global Ecology and Conservation, 2019, 20, e00793.	1.0	25
25	Does the law of diminishing returns in leaf scaling apply to vines? – Evidence from 12 species of climbing plants. Global Ecology and Conservation, 2020, 21, e00830.	1.0	22
26	A Simple Method for Measuring the Bilateral Symmetry of Leaves. Symmetry, 2018, 10, 118.	1.1	20
27	Modelling the combined effects of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in a controlled environment (nutrient broth). Food Control, 2016, 62, 32-43.	2.8	18
28	Comparative evaluation of a new lactation curve model for pasture-based Holstein-Friesian dairy cows. Journal of Dairy Science, 2012, 95, 5344-5356.	1.4	17
29	Comparison of five methods for parameter estimation under Taylor's power law. Ecological Complexity, 2017, 32, 121-130.	1.4	17
30	Taylor's Power Law for Leaf Bilateral Symmetry. Forests, 2018, 9, 500.	0.9	17
31	The Generalized Gielis Geometric Equation and Its Application. Symmetry, 2020, 12, 645.	1.1	17
32	The taxonomic foundation, species circumscription and continental endemisms of <i>Singerocybe </i> evidence from morphological and molecular data. Mycologia, 2014, 106, 1015-1026.	0.8	16
33	Modelling the combined effect of salt, sorbic acid and nisin on the probability of growth of Clostridium sporogenes in high moisture processed cheese analogue. International Dairy Journal, 2016, 57, 62-71.	1.5	16
34	Comparison of two ontogenetic growth equations for animals and plants. Ecological Modelling, 2017, 349, 1-10.	1.2	16
35	Some comments on Huang, L. (2010). Growth kinetics of Escherichia coli O157: H7 in mechanically-tenderized beef. International Journal of Food Microbiology, 140: 40–48. International Journal of Food Microbiology, 2011, 147, 78-80.	2.1	15
36	Contribution of Harvest Residues to Nutrient Cycling in a Tropical Acacia mangium Willd. Plantation. Forests, 2018, 9, 577.	0.9	15

#	Article	IF	CITATIONS
37	Association of <i>Eucalyptus globulus</i> leaf anatomy with susceptibility to <i>Teratosphaeria</i> leaf disease. Forest Pathology, 2018, 48, e12395.	0.5	14
38	Effect of glucose, pH and lactic acid on Carnobacterium maltaromaticum, Brochothrix thermosphacta and Serratia liquefaciens within a commercial heat-shrunk vacuum-package film. Food Microbiology, 2020, 91, 103515.	2.1	12
39	Diversity and ecology of epigeous ectomycorrhizal macrofungal assemblages in a native wet eucalypt forest in Tasmania, Australia. Fungal Ecology, 2011, 4, 290-298.	0.7	11
40	An assessment of ectomycorrhizal fungal communities in Tasmanian temperate high-altitude Eucalyptus delegatensis forest reveals a dominance of the Cortinariaceae. Mycorrhiza, 2017, 27, 67-74.	1.3	11
41	The maximum growth rate of life on Earth. International Journal of Astrobiology, 2018, 17, 17-33.	0.9	10
42	Diversity and phenology of the macrofungal assemblages supported by litter in a tall, wet Eucalyptus obliqua forest inÂsouthern Tasmania, Australia. Fungal Ecology, 2011, 4, 68-75.	0.7	9
43	Factors controlling individual branch development during early growth of an experimental plantation of Eucalyptus pilularis in sub-tropical Australia. Trees - Structure and Function, 2021, 35, 395-405.	0.9	7
44	A General Model for Describing the Ovate Leaf Shape. Symmetry, 2021, 13, 1524.	1.1	7
45	Application of an Ovate Leaf Shape Model to Evaluate Leaf Bilateral Asymmetry and Calculate Lamina Centroid Location. Frontiers in Plant Science, 2021, 12, 822907.	1.7	7
46	Choosing the number of principal coordinates when using CAP, the canonical analysis of principal coordinates. Austral Ecology, 2016, 41, 842-851.	0.7	6
47	Ganoderma basidiospore germination responses as affected by spore density, temperature and nutrient media. Tropical Plant Pathology, 2017, 42, 328-338.	0.8	6
48	Influence of the physical dimension of leaf size measures on the goodness of fit for Taylor's power law using 101 bamboo taxa. Global Ecology and Conservation, 2019, 19, e00657.	1.0	6
49	Effect of Environmental Factors on Intra-Specific Inhibitory Activity of Carnobacterium maltaromaticum. Microorganisms, 2017, 5, 59.	1.6	5
50	Maximising growth and sawlog production from Acacia hybrid plantations in Vietnam. New Forests, 2019, 50, 785-804.	0.7	5
51	Modelling viability of Listeria monocytogenes in paneer. Food Microbiology, 2021, 97, 103738.	2.1	5
52	Problems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale. Journal of Forestry Research, 0 , 1 .	1.7	5
53	Woodâ€rotting basidiomycetes are a minor component of fungal communities associated with <i>Acacia</i> hybrid trees grown for sawlogs in South Vietnam. Forest Pathology, 2019, 49, e12498.	0.5	3
54	Ease of Access to An Alternative Food Source Enables Wallabies to Strip Bark in Tasmanian Pinus radiata Plantations. Forests, 2020, 11, 387.	0.9	3

#	Article	IF	CITATIONS
55	Simulation studies comparing fixed effect and mixed models in data sets with multiple measurements in individual sampling units. Journal of Statistical Computation and Simulation, 2022, 92, 81-100.	0.7	3
56	Pathogen growth when implementing †Time as a Public Health Control†M. Food Microbiology, 2021, 96, 103718.	2.1	1
57	Phyllode inoculation provides a rapid protocol for preliminary screening of Acacia species for tolerance to Ceratocystis wilt and canker disease. European Journal of Plant Pathology, 2022, 163, 321-339.	0.8	1