Michael F Toney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990650/publications.pdf

Version: 2024-02-01

555 papers 60,774 citations

123 h-index 228 g-index

570 all docs

570 docs citations

570 times ranked

47161 citing authors

#	Article	IF	CITATIONS
1	Scattering techniques for mixed donor–acceptor characterization in organic photovoltaics. Materials Horizons, 2022, 9, 43-60.	6.4	11
2	Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. Journal of Chemical Physics, 2022, 156, 014504.	1.2	8
3	Thermodynamic guiding principles of high-capacity phase transformation materials for splitting H ₂ O and CO ₂ by thermochemical looping. Journal of Materials Chemistry A, 2022, 10, 3552-3561.	5.2	2
4	Revealing temperature-dependent polymer aggregation in solution with small-angle X-ray scattering. Journal of Materials Chemistry A, 2022, 10, 2096-2104.	5.2	8
5	Increased crystallite size in thin films of C ₆₀ and <i>p</i> PDMS-assisted crystallization. Journal of Materials Chemistry C, 2022, 10, 5657-5665.	2.7	O
6	Phonons in Metal Halide Perovskites. , 2022, , 1-35.		0
7	Influence of Annealing and Composition on the Crystal Structure of Mixed-Halide, Ruddlesden–Popper Perovskites. Chemistry of Materials, 2022, 34, 3109-3122.	3.2	27
8	Light-induced halide segregation in perovskites with wrinkled morphology. Journal of Energy Chemistry, 2022, 71, 83-88.	7.1	2
9	Conformal Pressure and Fast-Charging Li-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040540.	1.3	8
10	Mixing Matters: Nanoscale Heterogeneity and Stability in Metal Halide Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 471-480.	8.8	23
11	Beyond Local Solvation Structure: Nanometric Aggregates in Battery Electrolytes and Their Effect on Electrolyte Properties. ACS Energy Letters, 2022, 7, 461-470.	8.8	75
12	Why it is important to determine and report the impact of probe radiation. Joule, 2022, 6, 723-725.	11.7	6
13	Reaction-Mediated Transformation of Working Catalysts. ACS Catalysis, 2022, 12, 8007-8018.	5.5	6
14	Simulation and characterization of cation disorder in \$\$hbox {ZnGeP}_{2}\$\$. Journal of Materials Research, 2022, 37, 1986-1996.	1.2	1
15	Combined Effects of Uniform Applied Pressure and Electrolyte Additives in Lithium-Metal Batteries. ACS Applied Energy Materials, 2022, 5, 8273-8281.	2.5	9
16	Use of a Multiple Hydride Donor To Achieve an n-Doped Polymer with High Solvent Resistance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33598-33605.	4.0	3
17	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie, 2021, 133, 10975-10982.	1.6	10
18	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie - International Edition, 2021, 60, 10880-10887.	7.2	32

#	Article	IF	CITATIONS
19	Crystallization in one-step solution deposition of perovskite films: Upward or downward?. Science Advances, 2021, 7, .	4.7	165
20	Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy and Environmental Science, 2021, 14, 4858-4867.	15.6	29
21	Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries. Energy and Environmental Science, 2021, 14, 4979-4988.	15.6	58
22	Achieving High Thermoelectric Performance and Metallic Transport in Solventâ€Sheared PEDOT:PSS. Advanced Electronic Materials, 2021, 7, 2001190.	2.6	32
23	In Situ Characterization of Ferroelectric HfO ₂ During Rapid Thermal Annealing. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000598.	1.2	12
24	Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films. ACS Applied Materials & Diterfaces, 2021, 13, 13212-13225.	4.0	27
25	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€ion and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	10.2	114
26	Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nature Materials, 2021, 20, 991-999.	13.3	101
27	Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. Journal of Physical Chemistry B, 2021, 125, 2761-2770.	1.2	17
28	Water-in-Salt LiTFSI Aqueous Electrolytes. 1. Liquid Structure from Combined Molecular Dynamics Simulation and Experimental Studies. Journal of Physical Chemistry B, 2021, 125, 4501-4513.	1.2	52
29	Al tool makes phase identification crystal clear. Nature Computational Science, 2021, 1, 311-312.	3.8	0
30	Electrochemical ion insertion from the atomic to the device scale. Nature Reviews Materials, 2021, 6, 847-867.	23.3	84
31	Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nature Energy, 2021, 6, 642-652.	19.8	106
32	Controlling Polymer Morphology in Blade-Coated All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 5951-5961.	3.2	14
33	Orientation-Dependent Distortion of Lamellae in a Block Copolymer Electrolyte under DC Polarization. Macromolecules, 2021, 54, 7808-7821.	2.2	12
34	Quantification of Efficiency in Lithium Metal Negative Electrodes via Operando X-ray Diffraction. Chemistry of Materials, 2021, 33, 7537-7545.	3.2	17
35	Water or Anion? Uncovering the Zn ²⁺ Solvation Environment in Mixed Zn(TFSI) ₂ and LiTFSI Water-in-Salt Electrolytes. ACS Energy Letters, 2021, 6, 3458-3463.	8.8	45
36	Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. Chemistry of Materials, 2021, 33, 7315-7336.	3.2	39

3

#	Article	IF	Citations
37	Kinetic origins of the metastable zone width in the manganese oxide Pourbaix diagram. Journal of Materials Chemistry A, 2021, 9, 7857-7867.	5.2	7
38	Understanding Cu incorporation in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:mrow>tructure using resonant x-ray diffraction. Physical Review Materials, 2021, 5, .</mml:mrow></mml:msub></mml:mrow></mml:math>	യം ∢mml	l :s nn>2
39	Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Materials Horizons, 2021, 8, 1272-1285.	6.4	21
40	Alloying a single and a double perovskite: a Cu ^{+/2+} mixed-valence layered halide perovskite with strong optical absorption. Chemical Science, 2021, 12, 8689-8697.	3.7	24
41	Stable Glasses of Organic Semiconductor Resist Crystallization. Journal of Physical Chemistry B, 2021, 125, 461-466.	1.2	7
42	Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealing. Journal of Materials Chemistry C, 2021, 9, 15848-15857.	2.7	8
43	Compositional heterogeneity in Cs _{<i>y</i>} FA _{1â°'<i>y</i>} Pb(Br _{<i>x</i>} Ics1â°' <i>x</i>) _{3 perovskite films and its impact on phase behavior. Energy and Environmental Science, 2021, 14, 6394-6405.}	sub> 15.6	20
44	Using <i>In Situ</i> High-Energy X-ray Diffraction to Quantify Electrode Behavior of Li-Ion Batteries from Extreme Fast Charging. ACS Applied Energy Materials, 2021, 4, 11590-11598.	2.5	17
45	Surface equilibration mechanism controls the molecular packing of glassy molecular semiconductors at organic interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
46	Unraveling the Unconventional Order of a High-Mobility Indacenodithiophene–Benzothiadiazole Copolymer. ACS Macro Letters, 2021, 10, 1306-1314.	2.3	20
47	Emerging X-ray imaging technologies for energy materials. Materials Today, 2020, 34, 132-147.	8.3	70
48	High-capacity thermochemical CO ₂ dissociation using iron-poor ferrites. Energy and Environmental Science, 2020, 13, 592-600.	15.6	23
49	Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials. Matter, 2020, 2, 207-219.	5.0	128
50	Size-Dependent Lattice Structure and Confinement Properties in CsPbl ₃ Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Letters, 2020, 5, 238-247.	8.8	201
51	Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells. Journal of the American Chemical Society, 2020, 142, 392-406.	6.6	143
52	Inducing Molecular Aggregation of Polymer Semiconductors in a Secondary Insulating Polymer Matrix to Enhance Charge Transport. Chemistry of Materials, 2020, 32, 897-905.	3.2	40
53	Impact of Processing on Structural and Compositional Evolution in Mixed Metal Halide Perovskites during Film Formation. Advanced Functional Materials, 2020, 30, 2001752.	7.8	39
54	Heterogeneous Behavior of Lithium Plating during Extreme Fast Charging. Cell Reports Physical Science, 2020, 1, 100114.	2.8	49

#	Article	IF	CITATIONS
55	Cooling dynamics of two titanium alloys during laser powder bed fusion probed with in situ X-ray imaging and diffraction. Materials and Design, 2020, 195, 108987.	3.3	25
56	Test of the Dynamic-Domain and Critical Scattering Hypotheses in Cubic Methylammonium Lead Triiodide. Physical Review Letters, 2020, 125, .	2.9	13
57	Advanced Characterization in Clean Water Technologies. Joule, 2020, 4, 1637-1659.	11.7	33
58	Understanding additive controlled lithium morphology in lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 16960-16972.	5.2	26
59	Covalently Linked, Two-Dimensional Quantum Dot Assemblies. Langmuir, 2020, 36, 9944-9951.	1.6	4
60	Tuning Intra and Intermolecular Interactions for Balanced Hole and Electron Transport in Semiconducting Polymers. Chemistry of Materials, 2020, 32, 7338-7346.	3.2	24
61	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie - International Edition, 2020, 59, 23180-23187.	7.2	28
62	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie, 2020, 132, 23380-23387.	1.6	9
63	Preferred crystallographic orientation of cellulose in plant primary cell walls. Nature Communications, 2020, 11, 4720.	5.8	41
64	Timeâ€Resolved Structural Kinetics of an Organic Mixed Ionic–Electronic Conductor. Advanced Materials, 2020, 32, e2003404.	11.1	55
65	High Power Energy Storage via Electrochemically Expanded and Hydrated Manganese-Rich Oxides. Frontiers in Chemistry, 2020, 8, 715.	1.8	5
66	Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy and Environmental Science, 2020, 13, 4312-4321.	15.6	43
67	Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor?. ACS Applied Materials & Semiconductor?.	4.0	22
68	Sulfur-Donor Solvents Strongly Coordinate Pb ²⁺ in Hybrid Organic–Inorganic Perovskite Precursor Solutions. Journal of Physical Chemistry C, 2020, 124, 14496-14502.	1.5	38
69	Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nature Communications, 2020, 11 , 3050.	5.8	225
70	Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement. Chemistry of Materials, 2020, 32, 5604-5615.	3.2	18
71	<i>GIWAXS-SIIRkit</i> : scattering intensity, indexing and refraction calculation toolkit for grazing-incidence wide-angle X-ray scattering of organic materials. Journal of Applied Crystallography, 2020, 53, 1108-1129.	1.9	22
72	NASICON Na ₃ V ₂ (PO ₄) ₃ Enables Quasi-Two-Stage Na ⁺ and Zn ²⁺ Intercalation for Multivalent Zinc Batteries. Chemistry of Materials, 2020, 32, 3028-3035.	3.2	75

#	Article	IF	Citations
73	Using resonant energy X-ray diffraction to extract chemical order parameters in ternary semiconductors. Journal of Materials Chemistry C, 2020, 8, 4350-4356.	2.7	13
74	Synthesis of Poly(bisisoindigo) Using a Metal-Free Aldol Polymerization for Thin-Film Transistor Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14265-14271.	4.0	20
75	FA _{<i>x</i>} Cs _{1–<i>x</i>} Pbl ₃ Nanocrystals: Tuning Crystal Symmetry by A-Site Cation Composition. ACS Energy Letters, 2020, 5, 2475-2482.	8.8	34
76	Subsurface Cooling Rates and Microstructural Response during Laser Based Metal Additive Manufacturing. Scientific Reports, 2020, 10, 1981.	1.6	64
77	Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries. Journal of Chemical Physics, 2020, 152, 084702.	1.2	25
78	Molecular Orientation for Vapor-Deposited Organic Glasses Follows Rate-Temperature Superposition: The Case of Posaconazole. Journal of Physical Chemistry B, 2020, 124, 2505-2513.	1.2	19
79	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Science Advances, 2020, 6, eaay4045.	4.7	88
80	Degradation mechanisms in mixed-cation and mixed-halide Cs _x FA _{1â^'x} Pb(Br _y I _{1â^'y}) ₃ perovskite films under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 9302-9312.	5.2	26
81	Synthesis and Crystallization of Atomic Layer Deposition β-Eucryptite LiAlSiO ₄ Thin-Film Solid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 56935-56942.	4.0	6
82	Hybrid Nanostructured Ni(OH)2/NiO for High-Capacity Lithium-Ion Battery Anodes. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	1.1	4
83	Highly Reversible Plating/Stripping of Porous Zinc Anodes for Multivalent Zinc Batteries. Journal of the Electrochemical Society, 2020, 167, 140520.	1.3	14
84	X-Ray Studies of Energy Materials. , 2020, , 1803-1824.		0
85	Laserâ€Induced Keyhole Defect Dynamics during Metal Additive Manufacturing. Advanced Engineering Materials, 2019, 21, 1900455.	1.6	45
86	Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. Matter, 2019, 1, 180-191.	5.0	35
87	Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics. Chemistry of Materials, 2019, 31, 9472-9479.	3.2	18
88	Advanced X-ray Scattering and Spectroscopy Characterization of an Antisoiling Coating for Solar Module Glass. ACS Applied Energy Materials, 2019, 2, 7870-7878.	2.5	5
89	Vapor deposition of a nonmesogen prepares highly structured organic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21421-21426.	3.3	30
90	Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. ACS Energy Letters, 2019, 4, 2805-2812.	8.8	88

#	Article	IF	Citations
91	Effect of Extensional Flow on the Evaporative Assembly of a Donor–Acceptor Semiconducting Polymer. ACS Applied Electronic Materials, 2019, 1, 2445-2454.	2.0	4
92	Generic packing motifs in vapor-deposited glasses of organic semiconductors. Soft Matter, 2019, 15, 7590-7595.	1.2	14
93	Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-lon Batteries. Accounts of Chemical Research, 2019, 52, 2673-2683.	7.6	25
94	Fullerene derivative induced morphology of bulk heterojunction blends: PIPCP:PC ₆₁ BM. RSC Advances, 2019, 9, 4106-4112.	1.7	10
95	Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nature Materials, 2019, 18, 256-265.	13.3	280
96	Morphology of Organic Semiconductors Electrically Doped from Solution Using Phosphomolybdic Acid. Chemistry of Materials, 2019, 31, 6677-6683.	3.2	4
97	A map of the inorganic ternary metal nitrides. Nature Materials, 2019, 18, 732-739.	13.3	274
98	Augmenting n-Type Performance of Ambipolar Top-Contact Organic Thin-Film Transistors by Self-Generated Interlayers. Chemistry of Materials, 2019, 31, 7046-7053.	3.2	13
99	Vapor-Deposited Glass Structure Determined by Deposition Rate–Substrate Temperature Superposition Principle. Journal of Physical Chemistry Letters, 2019, 10, 3536-3542.	2.1	33
100	Multifunctional Optical Coatings and Light Management for Photovoltaics., 2019,, 153-173.		3
101	Ptychography of Organic Thin Films at Soft X-ray Energies. Chemistry of Materials, 2019, 31, 4913-4918.	3.2	7
102	Zn ₂ SbN ₃ : growth and characterization of a metastable photoactive semiconductor. Materials Horizons, 2019, 6, 1669-1674.	6.4	32
103	Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nature Communications, 2019, 10, 1987.	5.8	408
104	Chemical Evolution of CoCrMo Wear Particles: An in Situ Characterization Study. Journal of Physical Chemistry C, 2019, 123, 9894-9901.	1.5	4
105	Polyimideâ€PEG Segmented Block Copolymer Membranes with High Proton Conductivity by Improving Bicontinuous Nanostructure of Ionic Liquidâ€Doped Films. Macromolecular Chemistry and Physics, 2019, 220, 1900006.	1.1	3
106	Organic thin-film microstructure characterization. , 2019, , 489-528.		4
107	Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. Joule, 2019, 3, 872-884.	11.7	188
108	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101

#	Article	IF	CITATIONS
109	Robust and Stretchable Polymer Semiconducting Networks: From Film Microstructure to Macroscopic Device Performance. Chemistry of Materials, 2019, 31, 6530-6539.	3.2	37
110	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2019, 31, 9729-9741.	3.2	15
111	Li gradients for Li-rich cathodes. Nature Energy, 2019, 4, 1014-1015.	19.8	12
112	Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3806-A3819.	1.3	12
113	Tuning the bandgap of Cs ₂ AgBiBr ₆ through dilute tin alloying. Chemical Science, 2019, 10, 10620-10628.	3.7	58
114	Origin of Anisotropic Molecular Packing in Vapor-Deposited Alq3 Glasses. Journal of Physical Chemistry Letters, 2019, 10, 164-170.	2.1	49
115	Hydrogen Purification in Palladium-Based Membranes: An Operando X-ray Diffraction Study. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 926-934.	1.8	11
116	Higher Mobility and Carrier Lifetimes in Solutionâ€Processable Smallâ€Molecule Ternary Solar Cells with 11% Efficiency. Advanced Energy Materials, 2019, 9, 1802836.	10.2	65
117	Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films. Journal of Non-Crystalline Solids, 2019, 505, 109-114.	1.5	13
118	Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries. Joule, 2019, 3, 762-781.	11.7	185
119	X-Ray Studies of Energy Materials. , 2019, , 1-22.		0
120	Every Atom Counts: Elucidating the Fundamental Impact of Structural Change in Conjugated Polymers for Organic Photovoltaics. Chemistry of Materials, 2018, 30, 2995-3009.	3.2	39
121	Negative-pressure polymorphs made by heterostructural alloying. Science Advances, 2018, 4, eaaq1442.	4.7	34
122	Carrier Transport and Recombination in Efficient "Allâ€Smallâ€Molecule―Solar Cells with the Nonfullerene Acceptor IDTBR. Advanced Energy Materials, 2018, 8, 1800264.	10.2	63
123	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	10.2	43
124	Fluoroethylene Carbonate Induces Ordered Electrolyte Interface on Silicon and Sapphire Surfaces as Revealed by Sum Frequency Generation Vibrational Spectroscopy and X-ray Reflectivity. Nano Letters, 2018, 18, 2105-2111.	4.5	42
125	Graphene induced electrical percolation enables more efficient charge transport at a hybrid organic semiconductor/graphene interface. Physical Chemistry Chemical Physics, 2018, 20, 4422-4428.	1.3	13
126	The meniscus-guided deposition of semiconducting polymers. Nature Communications, 2018, 9, 534.	5.8	324

#	Article	IF	Citations
127	The nanoscale structure of the electrolyte–metal oxide interface. Energy and Environmental Science, 2018, 11, 594-602.	15.6	46
128	Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. Journal of Physical Chemistry C, 2018, 122, 11136-11144.	1.5	10
129	An instrument for <i>in situ</i> time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Review of Scientific Instruments, 2018, 89, 055101.	0.6	123
130	Morphological, Chemical, and Electronic Changes of the Conjugated Polymer PTB7 with Thermal Annealing. IScience, 2018, 2, 182-192.	1.9	37
131	Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation. ACS Energy Letters, 2018, 3, 1225-1232.	8.8	148
132	Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles. ACS Applied Materials & Langmuir†(1995-12004).	4.0	17
133	Understanding the reactivity of CoCrMo-implant wear particles. Npj Materials Degradation, 2018, 2, .	2.6	11
134	Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the Allâ€Polymer Solar Cell Performance. Advanced Energy Materials, 2018, 8, 1701552.	10.2	21
135	Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A6043-A6050.	1.3	21
136	Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11905-11910.	3.3	81
137	Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. ACS Nano, 2018, 12, 12369-12379.	7.3	366
138	Compositional engineering of tin-lead halide perovskites for efficient and stable low band gap solar cells. , 2018, , .		7
139	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Advanced Functional Materials, 2018, 28, 1803418.	7.8	42
140	Effect of Molecular Shape on the Properties of Non-Fullerene Acceptors: Contrasting Calamitic Versus 3D Design Principles. ACS Applied Energy Materials, 2018, 1, 6513-6523.	2.5	10
141	Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites. ACS Energy Letters, 2018, 3, 2694-2700.	8.8	184
142	Impact of Polymer Side Chain Modification on OPV Morphology and Performance. Chemistry of Materials, 2018, 30, 7872-7884.	3.2	38
143	Using X-ray Spectromicroscopy for Operando Characterization of Li-S Batteries. Microscopy and Microanalysis, 2018, 24, 440-441.	0.2	0
144	Zinc Blende Magnesium Sulfide in Rechargeable Magnesium-Sulfur Batteries. Chemistry of Materials, 2018, 30, 6318-6324.	3.2	29

#	Article	IF	Citations
145	General Post-annealing Method Enables High-Efficiency Two-Dimensional Perovskite Solar Cells. ACS Applied Materials & Sola	4.0	66
146	Engineering Stress in Perovskite Solar Cells to Improve Stability. Advanced Energy Materials, 2018, 8, 1802139.	10.2	271
147	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
148	Kinetic Versus Thermodynamic Orientational Preferences for a Series of Isomorphic Molecular Semiconductors. ACS Omega, 2018, 3, 10198-10204.	1.6	15
149	Stable solvent for solution-based electrical doping of semiconducting polymer films and its application to organic solar cells. Energy and Environmental Science, 2018, 11, 2216-2224.	15.6	32
150	Electrochemical trapping of metastable Mn \sup 3+ \le 1sup ions for activation of MnO \sup 2< \le 1sub oxygen evolution catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5261-E5268.	3.3	173
151	Enhancing Molecular Alignment and Charge Transport of Solutionâ€Sheared Semiconducting Polymer Films by the Electricalâ€Blade Effect. Advanced Electronic Materials, 2018, 4, 1800110.	2.6	27
152	Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules, 2018, 51, 4325-4340.	2.2	21
153	Understanding crystallization pathways leading to manganese oxide polymorph formation. Nature Communications, 2018, 9, 2553.	5.8	98
154	Triptycene as a Supramolecular Additive in PTB7:PCBM Blends and Its Influence on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2018, 10, 24665-24678.	4.0	9
155	Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy and Fuels, 2018, 2, 2450-2459.	2.5	167
156	Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 26972-26981.	4.0	99
157	Theoryâ€Guided Synthesis of a Metastable Leadâ€Free Piezoelectric Polymorph. Advanced Materials, 2018, 30, 1800559.	11.1	6
158	Understanding Chemomechanical Li-ion Cathode Degradation through Multi-Scale, Multi-Modal X-ray Spectromicroscopy. Microscopy and Microanalysis, 2018, 24, 426-427.	0.2	2
159	Transformation from crystalline precursor to perovskite in PbCl2-derived MAPbl3. Nature Communications, 2018, 9, 3458.	5.8	77
160	Solvent Additives: Key Morphologyâ€Directing Agents for Solutionâ€Processed Organic Solar Cells. Advanced Materials, 2018, 30, e1707114.	11.1	346
161	Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3463-3469.	2.1	50
162	The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy and Environmental Science, 2018, 11, 2172-2178.	15.6	105

#	Article	IF	Citations
163	Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. Chemistry of Materials, 2017, 29, 1964-1988.	3.2	116
164	Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions. Chemistry of Materials, 2017, 29, 1315-1320.	3.2	88
165	Highly Organized Smectic-like Packing in Vapor-Deposited Glasses of a Liquid Crystal. Chemistry of Materials, 2017, 29, 849-858.	3.2	30
166	Electric Field Tuning Molecular Packing and Electrical Properties of Solutionâ€Shearing Coated Organic Semiconducting Thin Films. Advanced Functional Materials, 2017, 27, 1605503.	7.8	47
167	Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nature Communications, 2017, 8, 14075.	5.8	149
168	Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics. Chemistry of Materials, 2017, 29, 3062-3069.	3.2	94
169	A highly stretchable, transparent, and conductive polymer. Science Advances, 2017, 3, e1602076.	4.7	962
170	Rollâ€ŧoâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	10.2	214
171	Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer. Physical Chemistry Chemical Physics, 2017, 19, 12441-12451.	1.3	23
172	Molecular engineering to improve carrier lifetimes for organic photovoltaic devices with thick active layers. Organic Electronics, 2017, 47, 57-65.	1.4	6
173	Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. Chemistry of Materials, 2017, 29, 5931-5941.	3.2	35
174	Exploring the influence of iron substitution in lithium rich layered oxides $Li\langle sub\rangle 2\langle sub\rangle Ru\langle sub\rangle 1a^*x\langle sub\rangle Fe\langle sub\rangle x\langle sub\rangle 0\langle sub\rangle 3\langle sub\rangle triggering the anionic redox reaction. Journal of Materials Chemistry A, 2017, 5, 14387-14396.$	5.2	18
175	Correlating photovoltaic properties of a PTB7-Th:PC ₇₁ BM blend to photophysics and microstructure as a function of thermal annealing. Journal of Materials Chemistry A, 2017, 5, 14646-14657.	5.2	61
176	Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Science Advances, 2017, 3, e1700270.	4.7	46
177	Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption. Journal of the American Chemical Society, 2017, 139, 5015-5018.	6.6	288
178	In situ probing of the crystallization kinetics of rr-P3HT on single layer graphene as a function of temperature. Physical Chemistry Chemical Physics, 2017, 19, 8496-8503.	1.3	19
179	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	2.6	89
180	Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains. Journal of Physical Chemistry Letters, 2017, 8, 5479-5486.	2.1	24

#	Article	IF	CITATIONS
181	Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order. Chemistry of Materials, 2017, 29, 9110-9119.	3.2	25
182	High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nature Energy, 2017, 2, 861-868.	19.8	372
183	Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. ACS Energy Letters, 2017, 2, 2159-2165.	8.8	351
184	Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices. Chemistry of Materials, 2017, 29, 7645-7652.	3.2	101
185	Vanadium As a Potential Membrane Material for Carbon Capture: Effects of Minor Flue Gas Species. Environmental Science & Environmental Science & Envir	4.6	9
186	The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon. Advanced Materials Interfaces, 2017, 4, 1700771.	1.9	39
187	Crystal truncation rods from miscut surfaces. Physical Review B, 2017, 95, .	1.1	6
188	Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn _{1â^2x} Ca _x Se. Journal of Materials Chemistry A, 2017, 5, 16873-16882.	5.2	19
189	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced Functional Materials, 2017, 27, 1701973.	7.8	80
190	Operando Spectroscopic Microscopy of LiCoO2 Cathodes Outside Standard Operating Potentials. Electrochimica Acta, 2017, 247, 977-982.	2.6	29
191	Point defects in Cu 2 ZnSnSe 4 (CZTSe): Resonant Xâ€ray diffraction study of the lowâ€temperature order/disorder transition. Physica Status Solidi (B): Basic Research, 2017, 254, 1700156.	0.7	14
192	Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nature Communications, 2017, 8, 79.	5.8	198
193	Unique Reversible Crystal-to-Crystal Phase Transition—Structural and Functional Properties of Fused Ladder Thienoarenes. Chemistry of Materials, 2017, 29, 7686-7696.	3.2	8
194	Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nature Communications, 2017, 8, 2091.	5.8	469
195	Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers. Journal of Physical Chemistry C, 2017, 121, 26528-26538.	1.5	11
196	High-fraction brookite films from amorphous precursors. Scientific Reports, 2017, 7, 15232.	1.6	56
197	Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. Journal of the American Chemical Society, 2017, 139, 11117-11124.	6.6	570
198	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Organic Electronics, 2017, 40, 79-87.	1.4	16

#	Article	IF	Citations
199	Operando X-Ray Diffraction for Characterization of Photovoltaic Materials. , 2017, , .		O
200	Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment. Advanced Materials, 2016, 28, 2359-2366.	11.1	65
201	Pâ€Type Transparent Cuâ€Alloyed ZnS Deposited at Room Temperature. Advanced Electronic Materials, 2016, 2, 1500396.	2.6	40
202	Mechanism of Na ⁺ Insertion in Alkali Vanadates and Its Influence on Battery Performance. Advanced Energy Materials, 2016, 6, 1502336.	10.2	26
203	Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant x-ray diffraction. Applied Physics Letters, 2016, 109, .	1.5	13
204	Influence of amorphous structure on polymorphism in vanadia. APL Materials, 2016, 4, .	2.2	15
205	Direct Uniaxial Alignment of a Donor–Acceptor Semiconducting Polymer Using Single-Step Solution Shearing. ACS Applied Materials & Shearing. Shearing. ACS Applied Materials & Shearing. Shearing. ACS Applied Materials & Shearing. She	4.0	87
206	Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow. International Journal of Greenhouse Gas Control, 2016, 48, 69-83.	2.3	31
207	Reduced crystallinity and enhanced charge transport by melt annealing of an organic semiconductor on single layer graphene. Journal of Materials Chemistry C, 2016, 4, 4143-4149.	2.7	17
208	Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer. Nano Letters, 2016, 16, 5247-5254.	4.5	9
209	Comparison of the Morphology Development of Polymer–Fullerene and Polymer–Polymer Solar Cells during Solution‧hearing Blade Coating. Advanced Energy Materials, 2016, 6, 1601225.	10.2	79
210	Surface structure of coherently strained ceria ultrathin films. Physical Review B, 2016, 94, .	1.1	6
211	Monitoring a Silent Phase Transition in CH ₃ NH ₃ Pbl ₃ Solar Cells via <i>Operando</i> X-ray Diffraction. ACS Energy Letters, 2016, 1, 1007-1012.	8.8	52
212	Role of Solution Structure in Self-Assembly of Conjugated Block Copolymer Thin Films. Macromolecules, 2016, 49, 8187-8197.	2.2	18
213	The formation mechanism for printed silver-contacts for silicon solar cells. Nature Communications, 2016, 7, 11143.	5.8	106
214	In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity. Nano Letters, 2016, 16, 7394-7401.	4.5	66
215	Growth of Highly Strained CeO ₂ Ultrathin Films. ACS Nano, 2016, 10, 9938-9947.	7.3	27
216	On twin density and resistivity of nanometric Cu thin films. Journal of Applied Physics, 2016, 120, .	1.1	14

#	Article	IF	CITATIONS
217	The effect of sub-oxide phases on the transparency of tin-doped gallium oxide. Applied Physics Letters, 2016, 109, .	1.5	9
218	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chemistry of Materials, 2016, 28, 5037-5042.	3.2	69
219	Nonâ€Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Advanced Electronic Materials, 2016, 2, 1600104.	2.6	65
220	Tuning the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Distriction (2016, 8, 1742-1751).	4.0	59
221	$P2\hat{a} \in \text{``Na} < \text{sub} < \text{i} > \text{c}/\text{sub} > \text{Co} < \text{sub} < \text{i} > \text{y} < \text{i} > \text{c}/\text{sub} > \text{O} < \text{sub} > 2 <$) Tj ETQq1 3.2	1 0.78431 154
222	Optoelectronic Devices: Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment (Adv. Mater. 12/2016). Advanced Materials, 2016, 28, 2463-2463.	11.1	0
223	Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1687-1694.	4.0	35
224	Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4211-4223.	5.2	180
225	In situ X-ray-based imaging of nano materials. Current Opinion in Chemical Engineering, 2016, 12, 14-21.	3.8	29
226	Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO ₃ . ACS Nano, 2016, 10, 4565-4569.	7.3	29
227	Self-assembly of cholesterol tethered within hydrogel networks. Polymer, 2016, 84, 371-382.	1.8	5
228	Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy. Nanoscale, 2016, 8, 1849-1853.	2.8	13
229	Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells. Journal of the American Chemical Society, 2016, 138, 463-470.	6.6	221
230	Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy. Applied Physics Letters, 2015, 107, .	1.5	53
231	Operando X-ray Studies of Crystalline Ge Anodes with Different Conductive Additives. Journal of Physical Chemistry C, 2015, 119, 22772-22777.	1.5	20
232	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	11.1	372
233	Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate. Advanced Energy Materials, 2015, 5, 1500599.	10.2	51
234	Extraction of pore-morphology and capillary pressure curves of porous media from synchrotron-based tomography data. Scientific Reports, 2015, 5, 10635.	1.6	20

#	Article	IF	Citations
235	Rapid thermal processing chamber for <i>in-situ</i> x-ray diffraction. Review of Scientific Instruments, 2015, 86, 013902.	0.6	15
236	Structural Characterization of Vapor-Deposited Glasses of an Organic Hole Transport Material with X-ray Scattering. Chemistry of Materials, 2015, 27, 3341-3348.	3.2	78
237	Development of a soft x-ray ptychography beamline at SSRL and its application in the study of energy storage materials. , 2015, , .		1
238	Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28035-28041.	4.0	20
239	Emerging In Situ and Operando Nanoscale Xâ€Ray Imaging Techniques for Energy Storage Materials. Advanced Functional Materials, 2015, 25, 1622-1637.	7.8	95
240	Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics. Chemistry of Materials, 2015, 27, 1223-1232.	3.2	12
241	(Cu <inline-formula> <téx-math>\$_{f}) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 512 Td (2}\$<td>ex-math&g 1.5</td><td>gt;15</td></téx-math></inline-formula>	ex-math&g 1.5	gt;15
242	*\\$&\tag{t, &\tag{t, &\tag{t, link}} inline-formula> Alloys IEEE Journal of Photovoltaics, 2015, 5, 372:377 Effects of aromatic regularity on the structure and conductivity of polyimideâ€poly(ethylene glycol) materials doped with ionic liquid. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 509-521.	2.4	8
243	Registration of the rotation axis in X-ray tomography. Journal of Synchrotron Radiation, 2015, 22, 452-457.	1.0	19
244	Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials. Advanced Energy Materials, 2015, 5, 1401869.	10.2	185
245	Tunable mesoscale-structured self-assembled hydrogels synthesized by organocatalytic ring-opening polymerization. Polymer, 2015, 65, 93-104.	1.8	2
246	Effect of Solution Shearing Method on Packing and Disorder of Organic Semiconductor Polymers. Chemistry of Materials, 2015, 27, 2350-2359.	3.2	92
247	Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14138-14143.	3.3	248
248	Chlorine in PbCl ₂ -Derived Hybrid-Perovskite Solar Absorbers. Chemistry of Materials, 2015, 27, 7240-7243.	3.2	91
249	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	5.8	221
250	Effect of Al ₂ O ₃ Coating on Stabilizing LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ Cathodes. Chemistry of Materials, 2015, 27, 6146-6154.	3.2	185
251	Effect of Solvent Additives on the Solution Aggregation of Phenyl-C ₆₁ –Butyl Acid Methyl Ester (PCBM). Chemistry of Materials, 2015, 27, 8261-8272.	3.2	26
252	Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation. Journal of Physical Chemistry Letters, 2015, 6, 6-12.	2.1	52

#	Article	IF	Citations
253	Enhanced Vertical Charge Transport in a Semiconducting P3HT Thin Film on Single Layer Graphene. Advanced Functional Materials, 2015, 25, 664-670.	7.8	138
254	Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications. Journal of Synchrotron Radiation, 2014, 21, 1019-1030.	1.0	27
255	Dependence of Crystallite Formation and Preferential Backbone Orientations on the Side Chain Pattern in PBDTTPD Polymers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19477-19481.	4.0	36
256	Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. Chemistry of Materials, 2014, 26, 7158-7165.	3.2	256
257	High-resolution x-ray analysis of graphene grown on 4H–SiC (000) at low pressures. Journal of Materials Research, 2014, 29, 439-446.	1.2	1
258	Controlling Solutionâ€Phase Polymer Aggregation with Molecular Weight and Solvent Additives to Optimize Polymerâ€Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301733.	10.2	194
259	Effect of Backbone Regioregularity on the Structure and Orientation of a Donor–Acceptor Semiconducting Copolymer. Macromolecules, 2014, 47, 1403-1410.	2.2	76
260	Impact of Hole Transport Layer Surface Properties on the Morphology of a Polymerâ€Fullerene Bulk Heterojunction. Advanced Energy Materials, 2014, 4, 1301879.	10.2	28
261	A Mechanistic Understanding of Processing Additiveâ€Induced Efficiency Enhancement in Bulk Heterojunction Organic Solar Cells. Advanced Materials, 2014, 26, 300-305.	11.1	145
262	Effect of Nonâ€Chlorinated Mixed Solvents on Charge Transport and Morphology of Solutionâ€Processed Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2014, 24, 3524-3534.	7.8	89
263	Mechanism of Crystallization and Implications for Charge Transport in Poly(3â€ethylhexylthiophene) Thin Films. Advanced Functional Materials, 2014, 24, 4515-4521.	7.8	66
264	Substrate-Induced Variations of Molecular Packing, Dynamics, and Intermolecular Electronic Couplings in Pentacene Monolayers on the Amorphous Silica Dielectric. ACS Nano, 2014, 8, 690-700.	7. 3	25
265	Control of the Electrical Properties in Spinel Oxides by Manipulating the Cation Disorder. Advanced Functional Materials, 2014, 24, 610-618.	7.8	109
266	Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. Energy and Environmental Science, 2014, 7, 1103.	15.6	56
267	Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 2014, 5, 3005.	5.8	1,155
268	Full open-framework batteries for stationary energy storage. Nature Communications, 2014, 5, 3007.	5.8	440
269	The Role of Solvent Additive Processing in High Performance Small Molecule Solar Cells. Chemistry of Materials, 2014, 26, 6531-6541.	3.2	58
270	Morphological Origin of Charge Transport Anisotropy in Aligned Polythiophene Thin Films. Advanced Functional Materials, 2014, 24, 3422-3431.	7.8	77

#	Article	IF	CITATIONS
271	Understanding the Selective Etching of Electrodeposited ZnO Nanorods. Langmuir, 2014, 30, 14079-14085.	1.6	15
272	Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2014, 2, 15717-15721.	5.2	43
273	Insitu nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy and Environmental Science, 2014, 7, 2771-2777.	15.6	117
274	Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries. Chemistry of Materials, 2014, 26, 3739-3746.	3.2	112
275	Experimental Characterization of a Theoretically Designed Candidate p-Type Transparent Conducting Oxide: Li-Doped Cr ₂ MnO ₄ . Chemistry of Materials, 2014, 26, 4598-4604.	3.2	14
276	Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions. Chemistry of Materials, 2014, 26, 5020-5027.	3.2	54
277	Crystallizationâ€Induced Phase Separation in Solutionâ€Processed Small Molecule Bulk Heterojunction Organic Solar Cells. Advanced Functional Materials, 2014, 24, 3543-3550.	7.8	66
278	Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of PBTTT and F ₄ TCNQ. Macromolecules, 2014, 47, 6836-6846.	2.2	164
279	Self-Doping and Electrical Conductivity in Spinel Oxides: Experimental Validation of Doping Rules. Chemistry of Materials, 2014, 26, 1867-1873.	3.2	35
280	Ordering Effects in Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> à6²]difuranâ€thieno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dione Fwith >7% Solar Cell Efficiency. Advanced Materials, 2014, 26, 4357-4362.	olymers	85
281	Operando Transmission X-ray Microscopy Studies on Li-lon Batteries. Microscopy and Microanalysis, 2014, 20, 1526-1527.	0.2	2
282	A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nature Materials, 2013, 12, 1038-1044.	13.3	1,742
283	Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8505-8515.	4.0	53
284	Effect of Surfactant Concentration and Aggregation on the Growth Kinetics of Nickel Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 16709-16718.	1.5	68
285	Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure. Journal of the American Chemical Society, 2013, 135, 11006-11014.	6.6	81
286	Charge Transport in Highly Face-On Poly(3-hexylthiophene) Films. Journal of Physical Chemistry C, 2013, 117, 17421-17428.	1.5	95
287	Efficient Energy Sensitization of C ₆₀ and Application to Organic Photovoltaics. Journal of the American Chemical Society, 2013, 135, 11920-11928.	6.6	17
288	Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 611-620.	2.4	87

#	Article	IF	CITATIONS
289	Swelling of Polymer Dielectric Thin Films for Organic-Transistor-Based Aqueous Sensing Applications. Chemistry of Materials, 2013, 25, 5018-5022.	3.2	8
290	Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4354-4363.	3.2	15
291	Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation. Journal of the American Chemical Society, 2013, 135, 19229-19236.	6.6	194
292	Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic–Metal Oxide Interface. Journal of Physical Chemistry C, 2013, 117, 20474-20484.	1.5	39
293	Rapid fabrication of a novel Sn–Ge alloy: structure–property relationship and its enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 14577.	5.2	47
294	Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2013, 222, 169-176.	4.0	50
295	Comparison of the Photovoltaic Characteristics and Nanostructure of Fullerenes Blended with Conjugated Polymers with Siloxane-Terminated and Branched Aliphatic Side Chains. Chemistry of Materials, 2013, 25, 431-440.	3.2	74
296	Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano, 2013, 7, 2659-2668.	7.3	88
297	Behaviors of Fe, Zn, and Ga Substitution in CulnS ₂ Nanoparticles Probed with Anomalous X-ray Diffraction. Chemistry of Materials, 2013, 25, 320-325.	3.2	19
298	Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors. Advanced Functional Materials, 2013, 23, 2091-2098.	7.8	77
299	Can Polymorphism be Used to form Branched Metal Nanostructures?. Advanced Materials, 2013, 25, 1552-1556.	11.1	72
300	The chemical and structural origin of efficient p-type doping in P3HT. Organic Electronics, 2013, 14, 1330-1336.	1.4	256
301	The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 364-374.	10.2	412
302	Two-Dimensional GIWAXS Reveals a Transient Crystal Phase in Solution-Processed Thermally Converted Tetrabenzoporphyrin. Journal of Physical Chemistry B, 2013, 117, 14557-14567.	1.2	21
303	Cross-Linked Ultrathin Polyurea Films via Molecular Layer Deposition. Macromolecules, 2013, 46, 5638-5643.	2.2	49
304	Ultrathin Body Poly(3-hexylthiophene) Transistors with Improved Short-Channel Performance. ACS Applied Materials & Description (2013), 5, 2342-2346.	4.0	27
305	Synthesis, solidâ€state, and chargeâ€transport properties of conjugated polythiopheneâ€∢i>S, <i>S</i> ,â€dioxides. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 48-56.	2.4	22
306	Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thinâ€Film Transistors. Advanced Functional Materials, 2013, 23, 366-376.	7.8	106

#	Article	IF	CITATIONS
307	Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries. Proceedings of SPIE, $2013, \ldots$	0.8	28
308	Structural and Rheological Properties of Meibomian Lipid. , 2013, 54, 2720.		63
309	Evolution of nanoscale roughness in Cu/SiO2 and Cu/Ta interfaces. Applied Physics Letters, 2012, 100, 024106.	1.5	7
310	Mitigating residual stress in Cu metallization. Applied Physics Letters, 2012, 101, 231906.	1.5	4
311	Effect of sintering conditions on mixed ionic-electronic conducting properties of silver sulfide nanoparticles. Journal of Applied Physics, 2012, 111, 053530.	1.1	3
312	Understanding stress gradients in microelectronic metallization. Powder Diffraction, 2012, 27, 92-98.	0.4	3
313	Electron mean free path of tungsten and the electrical resistivity of epitaxial (110) tungsten films. Physical Review B, 2012, 86, .	1.1	79
314	Interplay between magnetism and chemical structure at spinel-spinel interfaces. Journal of Applied Physics, 2012, 111, 093903.	1.1	7
315	Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum. Biophysical Journal, 2012, 102, 369-376.	0.2	51
316	5,11-Conjugation-extended low-bandgap anthradithiophene-containing polymer exhibiting enhanced thin-film order and field-effect mobility. Chemical Communications, 2012, 48, 7286.	2.2	16
317	Time-Resolved Structural Evolution of Additive-Processed Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2012, 134, 2884-2887.	6.6	125
318	A Quantitative Correlation between the Mobility and Crystallinity of Photo-Cross-Linkable P3HT. Macromolecules, 2012, 45, 3057-3062.	2.2	46
319	The Crystalline Structure of Copper Phthalocyanine Films on ZnO(11i00). Journal of the American Chemical Society, 2012, 134, 14302-14305.	6.6	27
320	Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance. Chemistry of Materials, 2012, 24, 2583-2591.	3.2	24
321	<i>In Situ</i> X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes. ACS Nano, 2012, 6, 5465-5473.	7.3	156
322	Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chemical Reviews, 2012, 112, 5488-5519.	23.0	1,133
323	High-Capacity Micrometer-Sized Li ₂ S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries. Journal of the American Chemical Society, 2012, 134, 15387-15394.	6.6	624
324	Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers. Journal of Materials Chemistry, 2012, 22, 4356.	6.7	14

#	Article	IF	Citations
325	Use of Xâ∈Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymerâ∈Fullerene Bimolecular Crystal. Advanced Materials, 2012, 24, 6071-6079.	11.1	126
326	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Advanced Energy Materials, 2012, 2, 1208-1217.	10.2	97
327	Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths. Journal of the American Chemical Society, 2012, 134, 20609-20612.	6.6	128
328	Poly(3-hexylthiophene) and [6,6]-Phenyl-C ₆₁ -butyric Acid Methyl Ester Mixing in Organic Solar Cells. Macromolecules, 2012, 45, 6587-6599.	2.2	103
329	Synthesis, Alignment, and Magnetic Properties of Monodisperse Nickel Nanocubes. Journal of the American Chemical Society, 2012, 134, 855-858.	6.6	141
330	Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Physical Review B, 2012, 86, .	1.1	100
331	A simple droplet pinning method for polymer film deposition for measuring charge transport in a thin film transistor. Organic Electronics, 2012, 13, 2450-2460.	1.4	43
332	Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing. Chemistry of Materials, 2012, 24, 3923-3931.	3.2	171
333	Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene. Nano Letters, 2012, 12, 1566-1570.	4.5	140
334	Controlling spin ordering in frustrated magnets via thin film heteroepitaxy. Physical Review B, 2012, 85, .	1.1	7
335	Side-Chain Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in Efficient Solar Cells. Journal of the American Chemical Society, 2012, 134, 2180-2185.	6.6	458
336	In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries. Journal of the American Chemical Society, 2012, 134, 6337-6343.	6.6	475
337	Molecular Structure of Interfacial Human Meibum Films. Langmuir, 2012, 28, 11858-11865.	1.6	42
338	Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- <i>b</i>)thiophene) Films. Journal of the American Chemical Society, 2012, 134, 6177-6190.	6.6	108
339	Measuring Domain Sizes and Compositional Heterogeneities in P3HTâ€PCBM Bulk Heterojunction Thin Films with ¹ H Spin Diffusion NMR Spectroscopy. Advanced Functional Materials, 2012, 22, 1255-1266.	7.8	47
340	Reticulated Organic Photovoltaics. Advanced Functional Materials, 2012, 22, 1167-1173.	7.8	13
341	A Supramolecular Complex in Smallâ€Molecule Solar Cells based on Contorted Aromatic Molecules. Angewandte Chemie - International Edition, 2012, 51, 8594-8597.	7.2	82
342	Growth Trajectories and Coarsening Mechanisms of Metal Nanoparticle Electrocatalysts. ChemCatChem, 2012, 4, 766-770.	1.8	27

#	Article	IF	Citations
343	Co3O4–Co2ZnO4 spinels: The case for a solid solution. Journal of Solid State Chemistry, 2012, 190, 143-149.	1.4	15
344	Fabrication of organic semiconductor crystalline thin films and crystals from solution by confined crystallization. Organic Electronics, 2012, 13, 235-243.	1.4	34
345	Probing the effect of substrate heating during deposition of DCV4T:C60 blend layers for organic solar cells. Organic Electronics, 2012, 13, 623-631.	1.4	22
346	Synthesis of regioregular pentacene-containing conjugated polymers. Journal of Materials Chemistry, 2011, 21, 7078.	6.7	19
347	In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 15224.	6.7	84
348	Controlling the Microstructure of Solution-Processable Small Molecules in Thin-Film Transistors through Substrate Chemistry. Chemistry of Materials, 2011, 23, 1194-1203.	3.2	67
349	Mechanistic Studies on Sintering of Silver Nanoparticles. Chemistry of Materials, 2011, 23, 4634-4640.	3.2	77
350	Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes. Langmuir, 2011, 27, 4430-4438.	1.6	8
351	Dealloying of Cu ₃ Pt (111) Studied by Surface X-ray Scattering. Journal of Physical Chemistry C, 2011, 115, 9074-9080.	1.5	65
352	A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices. Journal of Materials Chemistry, 2011, 21, 12700.	6.7	175
353	Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. Macromolecules, 2011, 44, 5246-5255.	2.2	278
354	Structure and Mechanism of Strength Enhancement in Interpenetrating Polymer Network Hydrogels. Macromolecules, 2011, 44, 5776-5787.	2.2	100
355	Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 1537-1543.	6.7	30
356	Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 20130-20133.	6.6	628
357	Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer. Langmuir, 2011, 27, 11444-11450.	1.6	23
358	Influence of Surfactant Structure on Reverse Micelle Size and Charge for Nonpolar Electrophoretic Inks. Langmuir, 2011, 27, 11845-11851.	1.6	62
359	Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011, 480, 504-508.	13.7	981
360	Zone-Refinement Effect in Small Moleculeâ^Polymer Blend Semiconductors for Organic Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 412-415.	6.6	59

#	Article	IF	CITATIONS
361	Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society, 2011, 133, 15073-15084.	6.6	381
362	How Nanoparticles Coalesce: An in Situ Study of Au Nanoparticle Aggregation and Grain Growth. Chemistry of Materials, 2011, 23, 3312-3317.	3.2	174
363	3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics. Journal of the American Chemical Society, 2011, 133, 16722-16725.	6.6	67
364	Size Dependence of a Temperature-Induced Solid–Solid Phase Transition in Copper(I) Sulfide. Journal of Physical Chemistry Letters, 2011, 2, 2402-2406.	2.1	111
365	Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. Macromolecules, 2011, 44, 6653-6658.	2.2	99
366	Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Physical Review B, $2011, 83, .$	1.1	180
367	Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Physical Review B, 2011, 84, .	1.1	262
368	Inverse design approach to hole doping in ternary oxides: Enhancing <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type conductivity in cobalt oxide spinels. Physical Review B, 2011, 84, .	1.1	81
369	Modular construction of P3HT/PCBM planar-heterojunction solar cells by lamination allows elucidation of processing–structure–function relationships. Organic Electronics, 2011, 12, 1963-1972.	1.4	18
370	Observation of Transient Structural-Transformation Dynamics in a Cu ₂ S Nanorod. Science, 2011, 333, 206-209.	6.0	220
371	Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 8248-8257.	7.3	260
372	SAXSMorph: a program for generating representative morphologies for two-phase materials from small-angle X-ray and neutron scattering data. Journal of Applied Crystallography, 2011, 44, 221-224.	1.9	9
373	The phase behavior of a polymerâ€fullerene bulk heterojunction system that contains bimolecular crystals. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 499-503.	2.4	71
374	Effects of Thermal Annealing Upon the Nanomorphology of Poly(3â€hexylselenophene)â€PCBM Blends. Macromolecular Rapid Communications, 2011, 32, 1454-1460.	2.0	17
375	In Situ Observation of Strain Development and Porosity Evolution in Nanoporous Gold Foils. Advanced Functional Materials, 2011, 21, 3938-3946.	7.8	60
376	Anisotropic Structure and Charge Transport in Highly Strainâ€Aligned Regioregular Poly(3â€hexylthiophene). Advanced Functional Materials, 2011, 21, 3697-3705.	7.8	288
377	Molecular Characterization of Organic Electronic Films. Advanced Materials, 2011, 23, 319-337.	11.1	215
378	Structural Order in Bulk Heterojunction Films Prepared with Solvent Additives. Advanced Materials, 2011, 23, 2284-2288.	11.1	248

#	Article	IF	Citations
379	Solutionâ€Processed Nanostructured Benzoporphyrin with Polycarbonate Binder for Photovoltaics. Advanced Materials, 2011, 23, 2289-2293.	11.1	38
380	Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Advanced Energy Materials, 2011, 1, 82-89.	10.2	572
381	Morphologyâ€Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2011, 1, 954-962.	10.2	183
382	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2011, 50, 4206-4209.	7.2	148
383	Influence of substrate on crystallization in polythiophene/fullerene blends. Solar Energy Materials and Solar Cells 2011, 95, 1375-1381 in spinels: Site occupancy in Co <mml:math< td=""><td>3.0</td><td>42</td></mml:math<>	3.0	42
384	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow< td=""><td>1.1</td><td>25</td></mml:mrow<></mml:msub>	1.1	25
385	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow -=""> <mml:< td=""><td>0.9</td><td>93</td></mml:<></mml:mrow></mml:msub>	0.9	93
386	Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chemical Communications, 2011, 47, 436-438.	2.2	103
387	High efficiency amine functionalization of cycloolefin polymer surfaces for biodiagnostics. Journal of Materials Chemistry, 2010, 20, 4116.	6.7	51
388	Surface and grain-boundary scattering in nanometric Cu films. Physical Review B, 2010, 81, .	1.1	172
389	Photovoltaic Universal Joints: Ballâ€andâ€Socket Interfaces in Molecular Photovoltaic Cells. ChemPhysChem, 2010, 11, 799-803.	1.0	74
390	Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends. Advanced Functional Materials, 2010, 20, 3519-3529.	7.8	539
391	Unconventional Faceâ€On Texture and Exceptional Inâ€Plane Order of a High Mobility nâ€Type Polymer. Advanced Materials, 2010, 22, 4359-4363.	11.1	344
392	Structural properties of epitaxial SrHfO3 thin films on Si (001). Thin Solid Films, 2010, 518, S118-S122.	0.8	24
393	Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2, 454-460.	6.6	2,489
394	X-Ray Probes for <i>In Situ</i> Studies of Interfaces. MRS Bulletin, 2010, 35, 504-513.	1.7	19
395	In situevolution of stress gradients in Cu films induced by capping layers. Applied Physics Letters, 2010, 96, 261903.	1.5	5
396	Organic Solar Cells: How X-ray Scattering Has Improved Our Understanding of Morphology. Synchrotron Radiation News, 2010, 23, 16-21.	0.2	7

#	Article	IF	Citations
397	Modified magnetic ground state in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>NiMn</mml:mtext></mml:mrow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><</mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:msub></mml:mrow></mml:math>	> 2. 4/mml:r	n മ5 < /mml:r
398	Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices. Macromolecules, 2010, 43, 3828-3836.	2.2	182
399	Synchrotron x-ray diffraction measurements of strain in metallic nanoparticles with oxide shells. Journal Physics D: Applied Physics, 2010, 43, 075301.	1.3	9
400	Morphology of Photopolymerized End-Linked Poly(ethylene glycol) Hydrogels by Small-Angle X-ray Scattering. Macromolecules, 2010, 43, 6861-6870.	2.2	87
401	Small-Molecule Thiophene-C ₆₀ Dyads As Compatibilizers in Inverted Polymer Solar Cells. Chemistry of Materials, 2010, 22, 5762-5773.	3.2	68
402	Synthesis and Characterization of K _{8â^3<i>x</i>} (H ₂) _{<i>y</i>} Si ₄₆ . Inorganic Chemistry, 2010, 49, 815-822.	1.9	28
403	Reversible Soft-Contact Lamination and Delamination for Non-Invasive Fabrication and Characterization of Bulk-Heterojunction and Bilayer Organic Solar Cells. Chemistry of Materials, 2010, 22, 4931-4938.	3.2	45
404	Synthesis, Properties, and Electronic Applications of Size-Controlled Poly(3-hexylthiophene) Nanoparticles. Langmuir, 2010, 26, 13056-13061.	1.6	95
405	Structure of Dealloyed PtCu3Thin Films and Catalytic Activity for Oxygen Reduction. Chemistry of Materials, 2010, 22, 4712-4720.	3.2	173
406	Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications. Journal of Materials Chemistry, 2010, 20, 5823.	6.7	84
407	Device-Scale Perpendicular Alignment of Colloidal Nanorods. Nano Letters, 2010, 10, 195-201.	4.5	241
408	Quantification of Thin Film Crystallographic Orientation Using X-ray Diffraction with an Area Detector. Langmuir, 2010, 26, 9146-9151.	1.6	315
409	Ultrafast Growth of Highly Branched Palladium Nanostructures for Catalysis. ACS Nano, 2010, 4, 396-402.	7.3	194
410	Laser-Synthesized Epitaxial Graphene. ACS Nano, 2010, 4, 7524-7530.	7.3	79
411	Pressure-induced quenching of the charge-density-wave state in rare-earth tritellurides observed by x-ray diffraction. Physical Review B, 2009, 79, .	1.1	30
412	Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials, 2009, 19, 1173-1179.	7.8	392
413	The Role of OTS Density on Pentacene and C ₆₀ Nucleation, Thin Film Growth, and Transistor Performance. Advanced Functional Materials, 2009, 19, 1962-1970.	7.8	227
414	Solidâ€6tate Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units. Advanced Materials, 2009, 21, 1193-1198.	11.1	76

#	Article	IF	Citations
415	Chargeâ€Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3â€hexylthiophene). Advanced Materials, 2009, 21, 1568-1572.	11.1	305
416	Precise Structure of Pentacene Monolayers on Amorphous Silicon Oxide and Relation to Charge Transport. Advanced Materials, 2009, 21, 2294-2298.	11.1	183
417	Controlling Nucleation and Crystallization in Solutionâ€Processed Organic Semiconductors for Thinâ€Film Transistors. Advanced Materials, 2009, 21, 3605-3609.	11.1	141
418	Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nature Materials, 2009, 8, 952-958.	13.3	416
419	In situ USAXS measurements of titania colloidal paint films during the drying process. Journal of Colloid and Interface Science, 2009, 336, 612-615.	5.0	12
420	Clipped Random Wave Morphologies and the Analysis of the SAXS of an Ionomer Formed by Copolymerization of Tetrafluoroethylene and CF2â•€FO(CF2)4SO3H. Macromolecules, 2009, 42, 5774-5780.	2.2	25
421	Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via Lithium Incorporation. Journal of Physical Chemistry C, 2009, 113, 17608-17612.	1.5	21
422	Influence of Interfacial Layer Between Nanoparticles and Polymeric Matrix on Viscoelastic Properties of Hydrogel Nanocomposites. Macromolecules, 2009, 42, 1331-1343.	2.2	10
423	Solution-Processable $\hat{l}\pm, \hat{l}\%$ -Distyryl Oligothiophene Semiconductors with Enhanced Environmental Stability. Chemistry of Materials, 2009, 21, 1927-1938.	3.2	29
424	Controlling the Orientation of Terraced Nanoscale "Ribbons―of a Poly(thiophene) Semiconductor. ACS Nano, 2009, 3, 780-787.	7.3	160
425	Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry, 2009, 19, 7195.	6.7	72
426	Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2009, 131, 9396-9404.	6.6	562
427	In Situ and Ex Situ Studies of Platinum Nanocrystals: Growth and Evolution in Solution. Journal of the American Chemical Society, 2009, 131, 14590-14595.	6.6	157
428	Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives. Chemistry of Materials, 2009, 21, 5508-5518.	3.2	84
429	Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation. Nano Letters, 2009, 9, 4153-4157.	4.5	243
430	Dominant role of grain boundary scattering in the resistivity of nanometric Cu films. Physical Review B, 2009, 79, .	1.1	98
431	Preparation of crystalline dielectric modification silane layer by spin-coating and its improvements on organic transistor performance. Proceedings of SPIE, 2009, , .	0.8	2
432	Langmuir Monolayers of Straight-Chain and Branched Hexadecanol and Eicosanol Mixtures. Langmuir, 2008, 24, 14005-14014.	1.6	15

#	Article	IF	Citations
433	Microstructure of Oligofluorene Asymmetric Derivatives in Organic Thin Film Transistors. Chemistry of Materials, 2008, 20, 2763-2772.	3.2	35
434	Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:msub><mml:mi mathvariant="normal">Te</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> . Physical Review B, 2008, 77, .	1.1	163
435	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. Macromolecules, 2008, 41, 5709-5715.	2.2	114
436	Square Grains in Asymmetric Rodâ^'Coil Block Copolymers. Langmuir, 2008, 24, 1604-1607.	1.6	15
437	In Situ Synchrotron X-ray Diffraction Experiments on Electrochemically Deposited ZnO Nanostructures. Journal of Physical Chemistry C, 2008, 112, 14863-14866.	1.5	12
438	Crystalline Structure in Thin Films of DEHâ^'PPV Homopolymer and PPV-b-PI Rodâ^'Coil Block Copolymers. Macromolecules, 2008, 41, 58-66.	2.2	42
439	The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. Journal of the American Chemical Society, 2008, 130, 16324-16329.	6.6	394
440	Thin Film Structure of Tetraceno[2,3- <i>b</i>]thiophene Characterized by Grazing Incidence X-ray Scattering and Near-Edge X-ray Absorption Fine Structure Analysis. Journal of the American Chemical Society, 2008, 130, 3502-3508.	6.6	65
441	Interfacial effects in thin films of polymeric semiconductors. Journal of Vacuum Science & Technology B, 2008, 26, 1454.	1.3	6
442	Strain development in nanoporous metallic foils formed by dealloying. Applied Physics Letters, 2008, 92, .	1.5	40
443	Correlating the microstructure of thin films of poly[5,5-bis(3-dodecyl-2-thienyl)-2,2-bithiophene] with charge transport: Effect of dielectric surface energy and thermal annealing. Physical Review B, 2008, 78, .	1.1	74
444	Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters. Physical Review B, 2008, 78,	1.1	78
445	display="inline"> <mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub></mml:msub>Te<mml:mn>5</mml:mn></mml:mrow> (<mml:mathvariant="normal")< td=""><td>ib><mmi: h) Tj ETQc 1.1</mmi: </td><td>mi 11 0.7843 1 14</td></mml:mathvariant="normal")<>	ib> <mmi: h) Tj ETQc 1.1</mmi: 	mi 11 0.7843 1 14
446	Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discussions, 2008, 140, 283-296.	1.6	71
447	Structural properties of epitaxial \hat{I}^3 -Al2O3 (111) thin films on 4H-SiC (0001). Applied Physics Letters, 2007, 90, 061916.	1.5	15
448	Engineering epitaxial Î ³ -Al2O3 gate dielectric films on 4H-SiC. Journal of Applied Physics, 2007, 102, 104112.	1.1	21
449	Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. Applied Physics Letters, 2007, 90, 233508.	1.5	66
450	Structure-Activity-Stability Relationships of Ptâ^'Co Alloy Electrocatalysts in Gas-Diffusion Electrode Layers. Journal of Physical Chemistry C, 2007, 111, 3744-3752.	1.5	188

#	Article	IF	Citations
451	Thin Film Transistors Based on Alkylphenyl Quaterthiophenes:Â Structure and Electrical Transport Properties. Chemistry of Materials, 2007, 19, 1355-1361.	3.2	23
452	Enrichment of Deuterium Oxide at Hydrophilic Interfaces in Aqueous Solutions. Langmuir, 2007, 23, 11943-11946.	1.6	2
453	Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochimica Acta, 2007, 52, 2765-2774.	2.6	159
454	Structure of oxidized bismuth nanoclusters. Acta Crystallographica Section B: Structural Science, 2007, 63, 569-576.	1.8	14
455	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules, 2007, 40, 7960-7965.	2.2	321
456	X-ray Scattering Study of Thin Films of Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Journal of the American Chemical Society, 2007, 129, 3226-3237.	6.6	351
457	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters, 2007, 90, 062117.	1.5	136
458	Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials, 2006, 5, 222-228.	13.3	737
459	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5, 328-333.	13.3	2,001
460	Structural effect of PtRu–WO3 alloy nanostructures on methanol electrooxidation. Electrochemistry Communications, 2006, 8, 359-363.	2.3	23
461	Applications of synchrotron X-rays in microelectronics industry research. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 247-252.	0.6	3
462	Electrochemical and electrochromic properties of nanoworm-shaped Ta2O5–Pt thin-films. Electrochemistry Communications, 2005, 7, 151-155.	2.3	12
463	On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films. Journal of Applied Physics, 2005, 98, 033904.	1.1	190
464	Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules, 2005, 38, 3312-3319.	2.2	1,003
465	Templating Organosilicate Vitrification Using Unimolecular Self-Organizing Polymers: Evolution of Morphology and Nanoporosity Development with Network Formation. Advanced Materials, 2005, 17, 1031-1035.	11.1	21
466	Magnetization profile in antiferromagnetically coupled recording media. Applied Physics Letters, 2005, 86, 162506.	1.5	5
467	Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering. Journal of Applied Physics, 2005, 97, 093301.	1.1	15
468	Coverage effects on the magnetism of Feâ • MgO (001) ultrathin films. Physical Review B, 2005, 71, .	1.1	50

#	Article	IF	Citations
469	p-Channel Organic Semiconductors Based on Hybrid Aceneâ^'Thiophene Molecules for Thin-Film Transistor Applications. Journal of the American Chemical Society, 2005, 127, 3997-4009.	6.6	204
470	Structure and Electrocatalysis of Sputtered RuPt Thin-Film Electrodes. Journal of Physical Chemistry B, 2005, 109, 12845-12849.	1.2	11
471	Local Atomic Structure of Partially Ordered NiMn in NiMn/NiFe Exchange Coupled Layers:Â 1. XAFS Measurements and Structural Refinement. Journal of Physical Chemistry B, 2005, 109, 10406-10418.	1.2	9
472	Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction. Physical Review B, 2005, 72, .	1.1	40
473	Stoichiometry–anisotropy connections in epitaxial L10 FePt(001) films. Journal of Applied Physics, 2004, 95, 7501-7503.	1.1	34
474	Origin of low-friction behavior in graphite investigated by surface x-ray diffraction. Applied Physics Letters, 2004, 84, 4702-4704.	1.5	83
475	Structural and magnetic model of self-assembled FePt nanoparticle arrays. Journal of Applied Physics, 2004, 96, 1197-1201.	1.1	44
476	Supercritical CO2extraction of porogen phase: An alternative route to nanoporous dielectrics. Journal of Materials Research, 2004, 19, 3224-3233.	1.2	15
477	Pore Morphologies in Disordered Nanoporous Thin Films. Langmuir, 2004, 20, 1535-1538.	1.6	17
478	Silicide formation and particle size growth in high-temperature-annealed, self-assembled FePt nanoparticles. Journal of Applied Physics, 2004, 95, 6738-6740.	1.1	34
479	Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2Substrate with Grazing Incidence X-ray Diffraction. Journal of the American Chemical Society, 2004, 126, 4084-4085.	6.6	412
480	Reduction of resistivity in Cu thin films by partial oxidation: Microstructural mechanisms. Applied Physics Letters, 2004, 84, 2518-2520.	1.5	10
481	Thickness and growth temperature dependence of structure and magnetism in FePt thin films. Journal of Applied Physics, 2003, 93, 9902-9907.	1.1	100
482	X-ray studies of magnetic nanoparticle assemblies. Journal of Applied Physics, 2003, 93, 7343-7345.	1.1	33
483	X-ray absorption and diffraction studies of thin polymer/FePt nanoparticle assemblies. Journal of Applied Physics, 2003, 93, 6299-6304.	1.1	34
484	Nanoscale phase separation in Fe3O4(111) films on sapphire(0001) and phase stability of Fe3O4(001) films on MgO(001) grown by oxygen-plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2003, 93, 5626-5636.	1.1	20
485	High anisotropy CoPtCrB magnetic recording media. Journal of Applied Physics, 2003, 94, 4018-4023.	1.1	17
486	Supercritical carbon dioxide extraction of porogens for the preparation of ultralow-dielectric-constant films. Applied Physics Letters, 2003, 82, 4328-4330.	1.5	26

#	Article	IF	Citations
487	Small-angle neutron scattering measurements of magnetic cluster sizes in magnetic recording disks. Applied Physics Letters, 2003, 82, 3050-3052.	1.5	14
488	Ion Beam Stabilization of FePt Nanoparticle Arrays for Magnetic Storage Media. Materials Research Society Symposia Proceedings, 2003, 777, 651.	0.1	1
489	Elastic properties of chemically ordered Co3Pt thin films. Journal of Applied Physics, 2002, 91, 2737-2741.	1.1	13
490	Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. Applied Physics Letters, 2002, 81, 2232-2234.	1.5	76
491	Spontaneous chemical ordering and exchange bias in epitaxial Mn0.52Pd0.48/Fe(001) bilayers prepared at room temperature. Applied Physics Letters, 2002, 80, 808-810.	1.5	14
492	Temperature dependent magnetic properties of highly chemically ordered Fe[sub 55â^'x]Ni[sub x]Pt[sub 45]L1[sub 0] films. Journal of Applied Physics, 2002, 91, 6595.	1.1	253
493	Thickness dependence of exchange bias and structure in MnPt and MnNi spin valves. Applied Physics Letters, 2002, 81, 4565-4567.	1.5	39
494	Oxygen-enhanced IrMn spin valves deposited by ion-beam and magnetron sputtering. Journal of Applied Physics, 2001, 89, 6925-6927.	1.1	7
495	Thickness Measurements of Thin Perfluoropolyether Polymer Films on Silicon and Amorphous-Hydrogenated Carbon with X-Ray Reflectivity, ESCA and Optical Ellipsometry. Journal of Colloid and Interface Science, 2000, 225, 219-226.	5.0	47
496	Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature, 2000, 405, 767-769.	13.7	441
497	Temperature dependent chemical ordering in FePt(001) and FePt(110) films. Journal of Applied Physics, 2000, 87, 6956-6958.	1.1	26
498	Roughness of molecularly thin perfluoropolyether polymer films. Applied Physics Letters, 2000, 77, 3296-3298.	1.5	21
499	The Structure of the Passive Film That Forms on Iron in Aqueous Environments. Journal of the Electrochemical Society, 2000, 147, 2162.	1.3	232
500	<i>In Situ</i> X-Ray-Diffraction Studies of Passive Oxide Films. MRS Bulletin, 1999, 24, 29-35.	1.7	17
501	Effects of stacking faults on magnetic viscosity in thin film magnetic recording media. Journal of Applied Physics, 1999, 85, 2775-2781.	1.1	46
502	10 Gbit/in.2 longitudinal media on a glass substrate (invited). Journal of Applied Physics, 1999, 85, 4286-4291.	1.1	77
503	Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. Chemical Reviews, 1999, 99, 77-174.	23.0	981
504	Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates. Chemistry of Materials, 1999, 11, 3080-3085.	3.2	214

#	Article	IF	CITATIONS
505	Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films. Journal of Applied Physics, 1998, 84, 5686-5692.	1.1	275
506	X-ray scattering studies of the passive oxide film formed on iron. Synchrotron Radiation News, 1998, 11, 5-11.	0.2	1
507	Magnetic anisotropy and microstructure in molecular beam epitaxial FePt (110)/MgO (110). Journal of Applied Physics, 1998, 84, 934-939.	1.1	72
508	Thickness Dependent Perpendicular Magnetic Domain Patterns in Sputtered Epitaxial FePt (001) L1 ₀ Films. Materials Research Society Symposia Proceedings, 1998, 517, 319.	0.1	4
509	Atomic Structure of the Passive Oxide Film Formed on Iron. Physical Review Letters, 1997, 79, 4282-4285.	2.9	189
510	Growth temperature dependence of longâ€range alloy order and magnetic properties of epitaxial FexPt1â^'x (xâ‰,0.5) films. Applied Physics Letters, 1996, 69, 1166-1168.	1.5	143
511	Near Surface Structure of Solvent-free Processed Polyimide Thin Film. Langmuir, 1996, 12, 2802-2806.	1.6	30
512	Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. Journal of Applied Physics, 1996, 79, 5967.	1.1	272
513	Near-surface alignment of polymers in rubbed films. Nature, 1995, 374, 709-711.	13.7	373
514	MBE Growth of Artificially-Layered Magnetic Metal Structures. , 1995, , 623-668.		0
515	Distribution of water molecules at $Ag(111)/e$ lectrolyte interface as studied with surface X-ray scattering. Surface Science, 1995, 335, 326-332.	0.8	167
516	Electrochemical Deposition of Copper on a Gold Electrode in Sulfuric Acid: Resolution of the Interfacial Structure. Physical Review Letters, 1995, 75, 4472-4475.	2.9	213
517	Giant magnetoresistance at low fields in [(NixFe1â^'x))yAg1â^'y]/Ag multilayers prepared by molecularâ€beam epitaxy. Journal of Applied Physics, 1994, 76, 3688-3694.	1.1	21
518	Comment on   Superstructures of Pb monolayers electrochemically deposited on Ag(111)''. Physical Review B, 1994, 49, 7793-7794.	1.1	19
519	Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature, 1994, 368, 444-446.	13.7	566
520	X-ray diffraction from anodic TiO2 films: in situ and ex situ comparison of the Ti (0001) face. Surface Science, 1994, 302, 341-349.	0.8	9
521	Near-surface structure of aromatic polyimides: the effect of precursor isomers. Faraday Discussions, 1994, 98, 319.	1.6	2
522	Studies of Electrodes by in Situ X-Ray Scattering. , 1994, , 109-125.		12

#	Article	IF	CITATIONS
523	Instrumental effects on measurements of surface X-ray diffraction rods: resolution function and active sample area. Acta Crystallographica Section A: Foundations and Advances, 1993, 49, 624-642.	0.3	24
524	Giant magnetoresistance and Co-cluster structure in phase-separated Co-Cu granular alloys. Physical Review B, 1993, 48, 16810-16813.	1.1	78
525	Grazing incidence x-ray scattering studies of thin films of an aromatic polyimide. Macromolecules, 1993, 26, 2847-2859.	2.2	131
526	Atomic structure at electrode interfaces. Synchrotron Radiation News, 1993, 6, 28-33.	0.2	33
527	Giant Magnetoresistance in As-Grown Epitaxial Films of Phase-Separated Co-Cu and Co-Ag. Europhysics Letters, 1993, 22, 455-462.	0.7	58
528	Magneto-optical Kerr spectroscopy of a new chemically ordered alloy:Co3Pt. Physical Review Letters, 1993, 71, 2493-2496.	2.9	193
529	Growth temperature dependence of magnetoresistance in Co/Cu(111) wedged superlattices. Physical Review B, 1993, 47, 8721-8733.	1.1	55
530	XRD., 1992,, 198-213.		8
531	Underpotentially deposited thallium on silver (111) byin situsurface x-ray scattering. Physical Review B, 1992, 45, 9362-9374.	1.1	73
532	Structure and epitaxy of anodic TiO2/Ti(110). Surface Science, 1992, 268, 57-72.	0.8	16
533	Synchrotron xâ€ray diffraction studies of the lattice and magnetic structure of epitaxial Dy films in LaF3/Dy/LaF3sandwiches. Journal of Applied Physics, 1991, 70, 4465-4468.	1.1	6
534	In situ surface x-ray scattering measurements of electrochemically deposited bismuth on silver(111): structure, compressibility, and comparison with ex situ low-energy electron diffraction measurements. Langmuir, 1991, 7, 796-802.	1.6	57
535	<title>In-situ surface x-ray scattering of metal monolayers adsorbed at solid-liquid interfaces</title> . , 1991, 1550, 140.		6
536	Surface-induced ordering of an aromatic polyimide. Physical Review Letters, 1991, 66, 1181-1184.	2.9	112
537	Thermal annealing study of exchangeâ€biased NiFeâ€FeMn films. Journal of Applied Physics, 1991, 70, 6227-6229.	1.1	46
538	Surface x-ray-scattering measurements of the substrate-induced spatial modulation of an incommensurate adsorbed monolayer. Physical Review B, 1990, 42, 5594-5603.	1.1	66
539	$X\hat{a}\in \mathbb{R}$ ay reflectivity on perfluoropolyether polymer molecules on amorphous carbon. Journal of Chemical Physics, 1990, 92, 3781-3793.	1.2	53
540	Structural depth profiling of iron oxide thin films using grazing incidence asymmetric Bragg xâ€ray diffraction. Journal of Applied Physics, 1989, 65, 4763-4768.	1.1	29

#	Article	IF	CITATIONS
541	Measurements of carbon thin films using xâ€ray reflectivity. Journal of Applied Physics, 1989, 66, 1861-1863.	1.1	72
542	Observation of the effect of refraction on x rays diffracted in a grazing-incidence asymmetric Bragg geometry. Physical Review B, 1989, 39, 7963-7966.	1.1	80
543	Grazing incidence x-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode/electrolyte interface. The Journal of Physical Chemistry, 1988, 92, 220-225.	2.9	158
544	In-situ grazing incidence X-ray diffraction study of electrochemically deposited Pb monolayers on Ag(111). Surface Science, 1988, 193, L29-L36.	0.8	102
545	Two-dimensional compressibility of electrochemically adsorbed lead on silver (111). Physical Review B, 1988, 38, 10962-10965.	1.1	78
546	X-ray depth profiling of iron oxide thin films. Journal of Materials Research, 1988, 3, 351-356.	1.2	93
547	In Situ X-Ray Scattering of Monolayers Adsorbed at Electrochemical Interfaces Materials Research Society Symposia Proceedings, 1988, 143, 37.	0.1	2
548	Low-energy electron diffraction study of molecular oxygen physisorbed on graphite. Physical Review B, 1987, 36, 1248-1258.	1.1	62
549	Low-energy electron diffraction determination of the structure of thel¶phase of oxygen physisorbed on graphite. Physical Review B, 1984, 30, 1115-1118.	1.1	48
550	Summary Abstract: Lowâ€energy electron diffraction study of the phases and phase transitions of oxygen physisorbed on graphite. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 898-898.	0.9	2
551	Rotational epitaxy of a nontriangular structure: Thel´phase of oxygen physisorbed on graphite. Physical Review B, 1983, 27, 6413-6417.	1.1	57
552	Orientational Ordering of Nitrogen Molecular Axes for a Commensurate Monolayer Physisorbed on Graphite. Physical Review Letters, 1982, 48, 177-180.	2.9	130
553	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. MRS Bulletin, 0, , 1-14.	1.7	O
554	Cubic on the Streets, Tetragonal in the Sheets: The Two-Dimensional Nature of Dynamic Disorder in Hybrid Metal Halide Perovskite Semiconductors. , 0, , .		0
555	Twisted Aâ€Dâ€A Type Acceptors with Thermallyâ€Activated Delayed Crystallization Behavior for Efficient Nonfullerene Organic Solar Cells. Advanced Energy Materials, 0, , 2103957.	10.2	6