Michael F Toney

List of Publications by Citations

Source: https://exaly.com/author-pdf/5990650/michael-f-toney-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

49,812 208 114 541 h-index g-index citations papers 7.6 11 570 55,039 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
541	Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. <i>Nature Chemistry</i> , 2010 , 2, 454-60	17.6	2116
540	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. <i>Nature Materials</i> , 2006 , 5, 328-33	27	1836
539	A general relationship between disorder, aggregation and charge transport in conjugated polymers. <i>Nature Materials</i> , 2013 , 12, 1038-44	27	1435
538	Pathways for practical high-energy long-cycling lithium metal batteries. <i>Nature Energy</i> , 2019 , 4, 180-186	6 62.3	1202
537	Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. <i>Nature Communications</i> , 2014 , 5, 3005	17.4	975
536	Quantitative determination of organic semiconductor microstructure from the molecular to device scale. <i>Chemical Reviews</i> , 2012 , 112, 5488-519	68.1	922
535	Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. <i>Macromolecules</i> , 2005 , 38, 3312-3319	5.5	922
534	Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. <i>Chemical Reviews</i> , 1999 , 99, 77-174	68.1	882
533	Tuning charge transport in solution-sheared organic semiconductors using lattice strain. <i>Nature</i> , 2011 , 480, 504-8	50.4	855
532	Highly oriented crystals at the buried interface in polythiophene thin-film transistors. <i>Nature Materials</i> , 2006 , 5, 222-228	27	701
531	A highly stretchable, transparent, and conductive polymer. <i>Science Advances</i> , 2017 , 3, e1602076	14.3	674
530	Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20130-3	16.4	582
529	Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. <i>Advanced Energy Materials</i> , 2011 , 1, 82-89	21.8	546
528	High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15387-94	16.4	524
527	Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9396-404	16.4	493
526	Effects of Thermal Annealing Upon the Morphology of Polymer E ullerene Blends. <i>Advanced Functional Materials</i> , 2010 , 20, 3519-3529	15.6	493
525	Voltage-dependent ordering of water molecules at an electrodellectrolyte interface. <i>Nature</i> , 1994 , 368, 444-446	50.4	491

(2009-2012)

524	Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2180-5	16.4	437
523	In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6337-43	16.4	428
522	Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. <i>Nature</i> , 2000 , 405, 767-9	50.4	407
521	Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence x-ray diffraction. <i>Journal of the American Chemical Society</i> , 2004 , 126, 4084-5	16.4	392
520	The Importance of Fullerene Percolation in the Mixed Regions of Polymer E ullerene Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 364-374	21.8	386
519	The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. <i>Journal of the American Chemical Society</i> , 2008 , 130, 16324-9	16.4	378
518	Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. <i>Nature Materials</i> , 2009 , 8, 952-8	27	376
517	Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. <i>Advanced Functional Materials</i> , 2009 , 19, 1173-1179	15.6	373
516	Full open-framework batteries for stationary energy storage. <i>Nature Communications</i> , 2014 , 5, 3007	17.4	367
515	Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11117-11124	16.4	353
514	Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15073-84	16.4	353
513	Near-surface alignment of polymers in rubbed films. <i>Nature</i> , 1995 , 374, 709-711	50.4	332
512	Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges. <i>Advanced Materials</i> , 2015 , 27, 5102-12	24	325
511	Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. <i>Nature Communications</i> , 2017 , 8, 2091	17.4	322
510	Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. <i>Advanced Materials</i> , 2010 , 22, 4359-63	24	317
509	X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). <i>Journal of the American Chemical Society</i> , 2007 , 129, 3226-37	16.4	317
508	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. <i>Macromolecules</i> , 2007 , 40, 7960-7965	5.5	297
507	Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene). <i>Advanced Materials</i> , 2009 , 21, 1568-1572	24	286

506	High-performance sodium B rganic battery by realizing four-sodium storage in disodium rhodizonate. <i>Nature Energy</i> , 2017 , 2, 861-868	62.3	272
505	Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. <i>Langmuir</i> , 2010 , 26, 9146-51	4	262
504	Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films. <i>Journal of Applied Physics</i> , 1998 , 84, 5686-5692	2.5	257
503	Anisotropic Structure and Charge Transport in Highly Strain-Aligned Regioregular Poly(3-hexylthiophene). <i>Advanced Functional Materials</i> , 2011 , 21, 3697-3705	15.6	253
502	Compositional and orientational control in metal halide perovskites of reduced dimensionality. <i>Nature Materials</i> , 2018 , 17, 900-907	27	252
501	Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. <i>Macromolecules</i> , 2011 , 44, 5246-5255	5.5	250
500	Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. <i>Journal of Applied Physics</i> , 1996 , 79, 5967	2.5	245
499	Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. <i>ACS Nano</i> , 2011 , 5, 8248-57	16.7	243
498	Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 2159-2165	20.1	242
497	Structural order in bulk heterojunction films prepared with solvent additives. <i>Advanced Materials</i> , 2011 , 23, 2284-8	24	241
496	Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. <i>Nano Letters</i> , 2009 , 9, 4153-7	11.5	235
495	Chloride in Lead Chloride-Derived Organo-Metal Halides for Perovskite-Absorber Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 7158-7165	9.6	230
494	Solvent Additives: Key Morphology-Directing Agents for Solution-Processed Organic Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1707114	24	228
493	Dynamics of pore formation during laser powder bed fusion additive manufacturing. <i>Nature Communications</i> , 2019 , 10, 1987	17.4	223
492	Device-scale perpendicular alignment of colloidal nanorods. <i>Nano Letters</i> , 2010 , 10, 195-201	11.5	223
491	Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation. <i>ACS Nano</i> , 2018 , 12, 12369-12379	16.7	220
490	The chemical and structural origin of efficient p-type doping in P3HT. Organic Electronics, 2013, 14, 133	 15336	5 219
489	Temperature dependent magnetic properties of highly chemically ordered Fe55\(\mathbb{B}\)NixPt45L10 films. Journal of Applied Physics, 2002, 91, 6595	2.5	219

488	The meniscus-guided deposition of semiconducting polymers. <i>Nature Communications</i> , 2018 , 9, 534	17.4	214
487	Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. <i>Physical Review B</i> , 2011 , 84,	3.3	2 10
486	The Role of OTS Density on Pentacene and C60 Nucleation, Thin Film Growth, and Transistor Performance. <i>Advanced Functional Materials</i> , 2009 , 19, 1962-1970	15.6	209
485	Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5015-5018	16.4	206
484	Observation of transient structural-transformation dynamics in a Cu2S nanorod. <i>Science</i> , 2011 , 333, 206	- 9 3.3	202
483	The Structure of the Passive Film That Forms on Iron in Aqueous Environments. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 2162	3.9	200
482	Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 463-70	16.4	192
481	p-Channel organic semiconductors based on hybrid acene-thiophene molecules for thin-film transistor applications. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3997-4009	16.4	192
480	Flow-enhanced solution printing of all-polymer solar cells. <i>Nature Communications</i> , 2015 , 6, 7955	17.4	191
479	Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates. <i>Chemistry of Materials</i> , 1999 , 11, 3080-3085	9.6	191
478	Molecular characterization of organic electronic films. <i>Advanced Materials</i> , 2011 , 23, 319-37	24	190
477	Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano, 2010, 4, 396-402	16.7	183
476	Controlling Solution-Phase Polymer Aggregation with Molecular Weight and Solvent Additives to Optimize Polymer-Fullerene Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 13017	33 ^{1.8}	182
475	Roll-to-Roll Printed Large-Area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. <i>Advanced Energy Materials</i> , 2017 , 7, 1602742	21.8	179
474	Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14138-43	11.5	179
473	Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. <i>Nature Materials</i> , 2019 , 18, 256-26	52 ₇	178
472	Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices. <i>Macromolecules</i> , 2010 , 43, 3828-3836	5.5	177
471	Electrochemical deposition of copper on a gold electrode in sulfuric acid: resolution of the interfacial structure. <i>Physical Review Letters</i> , 1995 , 75, 4472-4475	7.4	177

470	Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 954-962	21.8	176
469	Structure-Activity-Stability Relationships of Ptto Alloy Electrocatalysts in Gas-Diffusion Electrode Layers. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3744-3752	3.8	175
468	Magneto-optical Kerr spectroscopy of a new chemically ordered alloy: Co3Pt. <i>Physical Review Letters</i> , 1993 , 71, 2493-2496	7.4	175
467	On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films. <i>Journal of Applied Physics</i> , 2005 , 98, 033904	2.5	174
466	Precise Structure of Pentacene Monolayers on Amorphous Silicon Oxide and Relation to Charge Transport. <i>Advanced Materials</i> , 2009 , 21, 2294-2298	24	173
465	Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19229-36	16.4	170
464	A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12700		169
463	Structural origin of gap states in semicrystalline polymers and the implications for charge transport. <i>Physical Review B</i> , 2011 , 83,	3.3	166
462	Structure of Dealloyed PtCu3 Thin Films and Catalytic Activity for Oxygen Reduction. <i>Chemistry of Materials</i> , 2010 , 22, 4712-4720	9.6	166
461	Atomic Structure of the Passive Oxide Film Formed on Iron. <i>Physical Review Letters</i> , 1997 , 79, 4282-428	35 _{7.4}	166
460	Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. <i>Nature Communications</i> , 2017 , 8, 79	17.4	160
459	Manipulating the Morphology of P3HT P CBM Bulk Heterojunction Blends with Solvent Vapor Annealing. <i>Chemistry of Materials</i> , 2012 , 24, 3923-3931	9.6	151
458	In situ and ex situ studies of platinum nanocrystals: growth and evolution in solution. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14590-5	16.4	151
457	Effect of Al2O3 Coating on Stabilizing LiNi0.4Mn0.4Co0.2O2 Cathodes. <i>Chemistry of Materials</i> , 2015 , 27, 6146-6154	9.6	149
456	ActivityBtability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). <i>Electrochimica Acta</i> , 2007 , 52, 2765-2774	6.7	149
455	Distribution of water molecules at Ag(111)/electrolyte interface as studied with surface X-ray scattering. <i>Surface Science</i> , 1995 , 335, 326-332	1.8	149
454	A map of the inorganic ternary metal nitrides. <i>Nature Materials</i> , 2019 , 18, 732-739	27	148
453	Engineering Stress in Perovskite Solar Cells to Improve Stability. <i>Advanced Energy Materials</i> , 2018 , 8, 1802139	21.8	148

(2015-2009)

452	Controlling the orientation of terraced nanoscale "ribbons" of a poly(thiophene) semiconductor. <i>ACS Nano</i> , 2009 , 3, 780-7	16.7	145	
451	Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1401869	21.8	142	
450	Grazing incidence x-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode/electrolyte interface. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 220-225		142	
449	Surface and grain-boundary scattering in nanometric Cu films. <i>Physical Review B</i> , 2010 , 81,	3.3	141	
448	Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of PBTTT and F4TCNQ. <i>Macromolecules</i> , 2014 , 47, 6836-6846	5.5	138	
447	How Nanoparticles Coalesce: An in Situ Study of Au Nanoparticle Aggregation and Grain Growth. <i>Chemistry of Materials</i> , 2011 , 23, 3312-3317	9.6	138	
446	Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4206-9	16.4	138	
445	In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. <i>ACS Nano</i> , 2012 , 6, 5465-73	16.7	137	
444	Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe3. <i>Physical Review B</i> , 2008 , 77,	3.3	137	
443	A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells. <i>Advanced Materials</i> , 2014 , 26, 300-5	24	133	
442	Growth temperature dependence of long-range alloy order and magnetic properties of epitaxial FexPt1☑ (x?0.5) films. <i>Applied Physics Letters</i> , 1996 , 69, 1166-1168	3.4	133	
441	Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene. <i>Nano Letters</i> , 2012 , 12, 1566-70	11.5	132	
440	Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 855-8	16.4	130	
439	Controlling Nucleation and Crystallization in Solution-Processed Organic Semiconductors for Thin-Film Transistors. <i>Advanced Materials</i> , 2009 , 21, 3605-3609	24	129	
438	Electrochemical trapping of metastable Mn ions for activation of MnO oxygen evolution catalysts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E5261-E5268	3 ^{11.5}	129	
437	Tinte and halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy and Fuels, 2018, 2, 2450-2459	5.8	127	
436	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. <i>Applied Physics Letters</i> , 2007 , 90, 062117	3.4	125	
435	Enhanced Vertical Charge Transport in a Semiconducting P3HT Thin Film on Single Layer Graphene. <i>Advanced Functional Materials</i> , 2015 , 25, 664-670	15.6	124	

434	P2NaxCoyMn1NO2 (y = 0, 0.1) as Cathode Materials in Sodium-Ion Batteries Iffects of Doping and Morphology To Enhance Cycling Stability. <i>Chemistry of Materials</i> , 2016 , 28, 2041-2051	9.6	124
433	Narrow-band-gap conjugated chromophores with extended molecular lengths. <i>Journal of the American Chemical Society</i> , 2012 , 134, 20609-12	16.4	123
432	Orientational Ordering of Nitrogen Molecular Axes for a Commensurate Monolayer Physisorbed on Graphite. <i>Physical Review Letters</i> , 1982 , 48, 177-180	7.4	122
431	ManganeseBobalt hexacyanoferrate cathodes for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4211-4223	13	117
430	Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2884-7	16.4	117
429	Grazing incidence x-ray scattering studies of thin films of an aromatic polyimide. <i>Macromolecules</i> , 1993 , 26, 2847-2859	5.5	117
428	Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 2694-2700	20.1	117
427	Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. <i>Joule</i> , 2019 , 3, 872-884	27.8	114
426	Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. <i>Advanced Materials</i> , 2012 , 24, 6071-9	24	113
425	Thermal engineering of FAPbI perovskite material via radiative thermal annealing and in situ XRD. <i>Nature Communications</i> , 2017 , 8, 14075	17.4	110
424	In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. <i>Energy and Environmental Science</i> , 2014 , 7, 2771-2777	35.4	110
423	Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries. <i>Joule</i> , 2019 , 3, 762-781	27.8	109
422	Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation. <i>ACS Energy Letters</i> , 2018 , 3, 1225-1232	20.1	108
421	Size Dependence of a Temperature-Induced SolidBolid Phase Transition in Copper(I) Sulfide. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2402-2406	6.4	102
420	Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. <i>Chemical Communications</i> , 2011 , 47, 436-8	5.8	100
419	Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries. <i>Chemistry of Materials</i> , 2014 , 26, 3739-3746	9.6	98
418	Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 392-406	16.4	98
417	Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nature Communications, 2020, 11, 3050	17.4	97

(2009-2013)

416	Vertically Segregated Structure and Properties of Small Molecule P olymer Blend Semiconductors for Organic Thin-Film Transistors. <i>Advanced Functional Materials</i> , 2013 , 23, 366-376	15.6	97
4 ¹ 5	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. <i>Macromolecules</i> , 2008 , 41, 5709-5715	5.5	97
414	Thickness and growth temperature dependence of structure and magnetism in FePt thin films. <i>Journal of Applied Physics</i> , 2003 , 93, 9902-9907	2.5	96
413	Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization. <i>ACS Energy Letters</i> , 2020 , 5, 238-247	20.1	95
412	Surface-induced ordering of an aromatic polyimide. <i>Physical Review Letters</i> , 1991 , 66, 1181-1184	7.4	94
411	Poly(3-hexylthiophene) and [6,6]-Phenyl-C61-butyric Acid Methyl Ester Mixing in Organic Solar Cells. <i>Macromolecules</i> , 2012 , 45, 6587-6599	5.5	93
410	Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) films. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6177-90	16.4	93
409	Real-Time Observation of Poly(3-alkylthiophene) Crystallization and Correlation with Transient Optoelectronic Properties. <i>Macromolecules</i> , 2011 , 44, 6653-6658	5.5	92
408	In-situ grazing incidence X-ray diffraction study of electrochemically deposited Pb monolayers on Ag(111). <i>Surface Science</i> , 1988 , 193, L29-L36	1.8	92
407	An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. <i>Review of Scientific Instruments</i> , 2018 , 89, 055101	1.7	91
406	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 1208-1217	21.8	90
405	Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. <i>Physical Review B</i> , 2012 , 86,	3.3	90
404	X-ray depth profiling of iron oxide thin films. Journal of Materials Research, 1988, 3, 351-356	2.5	90
403	Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. <i>Chemistry of Materials</i> , 2017 , 29, 1964-1988	9.6	87
402	Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. <i>Langmuir</i> , 2010 , 26, 13056-61	4	87
401	Control of the Electrical Properties in Spinel Oxides by Manipulating the Cation Disorder. <i>Advanced Functional Materials</i> , 2014 , 24, 610-618	15.6	86
400	Structure and Mechanism of Strength Enhancement in Interpenetrating Polymer Network Hydrogels. <i>Macromolecules</i> , 2011 , 44, 5776-5787	5.5	84
399	Dominant role of grain boundary scattering in the resistivity of nanometric Cu films. <i>Physical Review B</i> , 2009 , 79,	3.3	84

398	Effect of Solution Shearing Method on Packing and Disorder of Organic Semiconductor Polymers. <i>Chemistry of Materials</i> , 2015 , 27, 2350-2359	9.6	81
397	Ordering effects in benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione polymers with >7% solar cell efficiency. <i>Advanced Materials</i> , 2014 , 26, 4357-62	24	80
396	Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors. <i>ACS Nano</i> , 2013 , 7, 2659-68	16.7	79
395	Chlorine in PbCl2-Derived Hybrid-Perovskite Solar Absorbers. <i>Chemistry of Materials</i> , 2015 , 27, 7240-724	13 .6	78
394	Charge Transport in Highly Face-On Poly(3-hexylthiophene) Films. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17421-17428	3.8	78
393	Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2013 , 51, 611-620	2.6	77
392	Emerging In Situ and Operando Nanoscale X-Ray Imaging Techniques for Energy Storage Materials. <i>Advanced Functional Materials</i> , 2015 , 25, 1622-1637	15.6	77
391	In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15224		77
390	Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives. <i>Chemistry of Materials</i> , 2009 , 21, 5508-5518	9.6	77
389	Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials. <i>Matter</i> , 2020 , 2, 207-219	12.7	77
388	A supramolecular complex in small-molecule solar cells based on contorted aromatic molecules. Angewandte Chemie - International Edition, 2012 , 51, 8594-7	16.4	76
387	Thiophene-rich fused-aromatic thienopyrazine acceptor for donorEcceptor low band-gap polymers for OTFT and polymer solar cell applications. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5823		76
386	Giant magnetoresistance and Co-cluster structure in phase-separated Co-Cu granular alloys. <i>Physical Review B</i> , 1993 , 48, 16810-16813	3.3	76
385	Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels. <i>Physical Review B</i> , 2011 , 84,	3.3	74
384	Morphology of Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering. <i>Macromolecules</i> , 2010 , 43, 6861-6870	5.5	74
383	Comparison of the Morphology Development of Polymer B ullerene and Polymer B olymer Solar Cells during Solution-Shearing Blade Coating. <i>Advanced Energy Materials</i> , 2016 , 6, 1601225	21.8	73
382	The formation mechanism for printed silver-contacts for silicon solar cells. <i>Nature Communications</i> , 2016 , 7, 11143	17.4	73
381	Effect of Non-Chlorinated Mixed Solvents on Charge Transport and Morphology of Solution-Processed Polymer Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2014 , 24, 3524-353	4 ^{15.6}	73

(2002-2013)

380	Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11006-14	16.4	71
379	Comparison of the Photovoltaic Characteristics and Nanostructure of Fullerenes Blended with Conjugated Polymers with Siloxane-Terminated and Branched Aliphatic Side Chains. <i>Chemistry of Materials</i> , 2013 , 25, 431-440	9.6	71
378	Direct Uniaxial Alignment of a Donor-Acceptor Semiconducting Polymer Using Single-Step Solution Shearing. <i>ACS Applied Materials & Acs Applied & Acs Appli</i>	9.5	71
377	The phase behavior of a polymer-fullerene bulk heterojunction system that contains bimolecular crystals. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 499-503	2.6	70
376	10 Gbit/in.2 longitudinal media on a glass substrate (invited). Journal of Applied Physics, 1999, 85, 4286	-4 <u>2</u> 91	70
375	Observation of the effect of refraction on x rays diffracted in a grazing-incidence asymmetric Bragg geometry. <i>Physical Review B</i> , 1989 , 39, 7963-7966	3.3	70
374	Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions. <i>Chemistry of Materials</i> , 2017 , 29, 1315-1320	9.6	69
373	Origin of low-friction behavior in graphite investigated by surface x-ray diffraction. <i>Applied Physics Letters</i> , 2004 , 84, 4702-4704	3.4	69
372	Measurements of carbon thin films using x-ray reflectivity. <i>Journal of Applied Physics</i> , 1989 , 66, 1861-18	3 62 .5	69
371	Two-dimensional compressibility of electrochemically adsorbed lead on silver (111). <i>Physical Review B</i> , 1988 , 38, 10962-10965	3.3	69
370	Mixing Behavior in Small Molecule:Fullerene Organic Photovoltaics. <i>Chemistry of Materials</i> , 2017 , 29, 3062-3069	9.6	68
369	Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors. <i>Advanced Functional Materials</i> , 2013 , 23, 2091-2098	15.6	68
368	Mechanistic Studies on Sintering of Silver Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 4634-4640	9.6	68
367	Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters. <i>Physical Review B</i> , 2008 , 78,	3.3	68
366	Effect of Backbone Regioregularity on the Structure and Orientation of a Donor Acceptor Semiconducting Copolymer. <i>Macromolecules</i> , 2014 , 47, 1403-1410	5.5	67
365	Laser-synthesized epitaxial graphene. ACS Nano, 2010 , 4, 7524-30	16.7	67
364	Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7195		67
363	Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. <i>Applied Physics Letters</i> , 2002 , 81, 2232-2234	3.4	67

362	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene-diketopyrrolopyrrole) Polymers. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600311	6.4	66
361	Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 26972-26981	9.5	66
360	Morphological Origin of Charge Transport Anisotropy in Aligned Polythiophene Thin Films. <i>Advanced Functional Materials</i> , 2014 , 24, 3422-3431	15.6	66
359	Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2011 , 29, 051512	2.9	66
358	Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). <i>Faraday Discussions</i> , 2008 , 140, 283-96; discussion 297-	317	66
357	Correlating the microstructure of thin films of poly[5,5-bis(3-dodecyl-2-thienyl)-2,2-bithiophene] with charge transport: Effect of dielectric surface energy and thermal annealing. <i>Physical Review B</i> , 2008 , 78,	3.3	66
356	Magnetic anisotropy and microstructure in molecular beam epitaxial FePt (110)/MgO (110). <i>Journal of Applied Physics</i> , 1998 , 84, 934-939	2.5	66
355	The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. <i>Energy and Environmental Science</i> , 2018 , 11, 2172-2178	35.4	65
354	Photovoltaic universal joints: ball-and-socket interfaces in molecular photovoltaic cells. <i>ChemPhysChem</i> , 2010 , 11, 799-803	3.2	65
353	Understanding crystallization pathways leading to manganese oxide polymorph formation. <i>Nature Communications</i> , 2018 , 9, 2553	17.4	65
352	Structural Characterization of Vapor-Deposited Glasses of an Organic Hole Transport Material with X-ray Scattering. <i>Chemistry of Materials</i> , 2015 , 27, 3341-3348	9.6	64
351	3,4-Disubstituted polyalkylthiophenes for high-performance thin-film transistors and photovoltaics. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16722-5	16.4	64
350	Electron mean free path of tungsten and the electrical resistivity of epitaxial (110) tungsten films. <i>Physical Review B</i> , 2012 , 86,	3.3	63
349	Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. <i>Applied Physics Letters</i> , 2007 , 90, 233508	3.4	63
348	Underpotentially deposited thallium on silver (111) by in situ surface x-ray scattering. <i>Physical Review B</i> , 1992 , 45, 9362-9374	3.3	63
347	Can polymorphism be used to form branched metal nanostructures?. Advanced Materials, 2013, 25, 1552	2 <u>∍</u> 6µ	62
346	Surface x-ray-scattering measurements of the substrate-induced spatial modulation of an incommensurate adsorbed monolayer. <i>Physical Review B</i> , 1990 , 42, 5594-5603	3.3	62
345	Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices. <i>Chemistry of Materials</i> , 2017 , 29, 7645-7652	9.6	61

344	Small-Molecule Thiophene-C60 Dyads As Compatibilizers in Inverted Polymer Solar Cells. <i>Chemistry of Materials</i> , 2010 , 22, 5762-5773	9.6	61	
343	Dealloying of Cu3Pt (111) Studied by Surface X-ray Scattering. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9074-9080	3.8	61	
342	Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3502-8	16.4	61	
341	Transformation from crystalline precursor to perovskite in PbCl-derived MAPbI. <i>Nature Communications</i> , 2018 , 9, 3458	17.4	59	
340	Crystallization-Induced Phase Separation in Solution-Processed Small Molecule Bulk Heterojunction Organic Solar Cells. <i>Advanced Functional Materials</i> , 2014 , 24, 3543-3550	15.6	59	
339	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. <i>Advanced Functional Materials</i> , 2017 , 27, 1701973	15.6	59	
338	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. <i>Chemistry of Materials</i> , 2016 , 28, 5037-5042	9.6	58	
337	Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films. <i>Advanced Functional Materials</i> , 2014 , 24, 4515-4521	15.6	58	
336	Effect of Surfactant Concentration and Aggregation on the Growth Kinetics of Nickel Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16709-16718	3.8	58	
335	Low-energy electron diffraction study of molecular oxygen physisorbed on graphite. <i>Physical Review B</i> , 1987 , 36, 1248-1258	3.3	58	
334	Controlling the Microstructure of Solution-Processable Small Molecules in Thin-Film Transistors through Substrate Chemistry. <i>Chemistry of Materials</i> , 2011 , 23, 1194-1203	9.6	57	
333	Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment. <i>Advanced Materials</i> , 2016 , 28, 2359-66	24	57	
332	Influence of surfactant structure on reverse micelle size and charge for nonpolar electrophoretic inks. <i>Langmuir</i> , 2011 , 27, 11845-51	4	56	
331	Crystallization in one-step solution deposition of perovskite films: Upward or downward?. <i>Science Advances</i> , 2021 , 7,	14.3	56	
330	Rotational epitaxy of a nontriangular structure: The phase of oxygen physisorbed on graphite. <i>Physical Review B</i> , 1983 , 27, 6413-6417	3.3	55	
329	Non-Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600	164	54	
328	The Role of Solvent Additive Processing in High Performance Small Molecule Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 6531-6541	9.6	54	
327	Giant Magnetoresistance in As-Grown Epitaxial Films of Phase-Separated Co-Cu and Co-Ag. <i>Europhysics Letters</i> , 1993 , 22, 455-462	1.6	54	

326	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. <i>Science Advances</i> , 2020 , 6, eaay4045	14.3	53
325	Zone-refinement effect in small molecule-polymer blend semiconductors for organic thin-film transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 412-5	16.4	53
324	Carrier Transport and Recombination in Efficient All-Small-Molecule Solar Cells with the Nonfullerene Acceptor IDTBR. <i>Advanced Energy Materials</i> , 2018 , 8, 1800264	21.8	52
323	Growth temperature dependence of magnetoresistance in Co/Cu(111) wedged superlattices. <i>Physical Review B</i> , 1993 , 47, 8721-8733	3.3	52
322	Higher Mobility and Carrier Lifetimes in Solution-Processable Small-Molecule Ternary Solar Cells with 11% Efficiency. <i>Advanced Energy Materials</i> , 2019 , 9, 1802836	21.8	52
321	Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11905-11910	11.5	52
320	General Post-annealing Method Enables High-Efficiency Two-Dimensional Perovskite Solar Cells. <i>ACS Applied Materials & Distributed & Distr</i>	9.5	52
319	Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. <i>ACS Energy Letters</i> , 2019 , 4, 2805-2812	20.1	51
318	In Situ Observation of Strain Development and Porosity Evolution in Nanoporous Gold Foils. <i>Advanced Functional Materials</i> , 2011 , 21, 3938-3946	15.6	51
317	In situ surface x-ray scattering measurements of electrochemically deposited bismuth on silver(111): structure, compressibility, and comparison with ex situ low-energy electron diffraction measurements. <i>Langmuir</i> , 1991 , 7, 796-802	4	51
316	Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2013 , 222, 169-176	8.9	50
315	X-ray reflectivity on perfluoropolyether polymer molecules on amorphous carbon. <i>Journal of Chemical Physics</i> , 1990 , 92, 3781-3793	3.9	50
314	Correlating photovoltaic properties of a PTB7-Th:PC71BM blend to photophysics and microstructure as a function of thermal annealing. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14646-1465	573	49
313	Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. <i>Energy and Environmental Science</i> , 2014 , 7, 1103	35.4	49
312	Tuning the Morphology of All-Polymer OPVs through Altering PolymerBolvent Interactions. <i>Chemistry of Materials</i> , 2014 , 26, 5020-5027	9.6	49
311	Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells. <i>ACS Applied Materials & Description</i> (2013), 5, 8505-15	9.5	49
310	Structural and rheological properties of meibomian lipid 2013 , 54, 2720-32		49
309	In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity. <i>Nano Letters</i> , 2016 , 16, 7394-7401	11.5	48

308	Tuning the Morphology of Solution-Sheared P3HT:PCBM Films. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 1742-51).5	47
307	Low-energy electron diffraction determination of the structure of the phase of oxygen physisorbed on graphite. <i>Physical Review B</i> , 1984 , 30, 1115-1118	3.3	47
306	Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 6-12	5.4	46
305	High efficiency amine functionalization of cycloolefin polymer surfaces for biodiagnostics. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4116		46
304	Coverage effects on the magnetism of FeMgO(001) ultrathin films. <i>Physical Review B</i> , 2005 , 71,	3.3	46
303	Effects of stacking faults on magnetic viscosity in thin film magnetic recording media. <i>Journal of Applied Physics</i> , 1999 , 85, 2775-2781	2.5	46
302	Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate. <i>Advanced Energy Materials</i> , 2015 , 5, 1500599	21.8	45
301	Measuring Domain Sizes and Compositional Heterogeneities in P3HT-PCBM Bulk Heterojunction Thin Films with 1H Spin Diffusion NMR Spectroscopy. <i>Advanced Functional Materials</i> , 2012 , 22, 1255-1266	5.6	45
300	Monitoring a Silent Phase Transition in CH3NH3PbI3 Solar Cells via Operando X-ray Diffraction. <i>ACS Energy Letters</i> , 2016 , 1, 1007-1012	20.1	43
299	Cross-Linked Ultrathin Polyurea Films via Molecular Layer Deposition. <i>Macromolecules</i> , 2013 , 46, 5638-56	,4 3	43
298	Reversible Soft-Contact Lamination and Delamination for Non-Invasive Fabrication and Characterization of Bulk-Heterojunction and Bilayer Organic Solar Cells. <i>Chemistry of Materials</i> , 2010 , 22, 4931-4938	9.6	43
297	Thickness Measurements of Thin Perfluoropolyether Polymer Films on Silicon and Amorphous-Hydrogenated Carbon with X-Ray Reflectivity, ESCA and Optical Ellipsometry. <i>Journal of Colloid and Interface Science</i> , 2000 , 225, 219-226	9.3	43
296	Rapid fabrication of a novel Snte alloy: structureBroperty relationship and its enhanced lithium storage properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 14577	13	42
295	Influence of substrate on crystallization in polythiophene/fullerene blends. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 1375-1381	5.4	42
294	Thermal annealing study of exchange-biased NiFe-FeMn films. <i>Journal of Applied Physics</i> , 1991 , 70, 6227-1	6329	42
293	Electric Field Tuning Molecular Packing and Electrical Properties of Solution-Shearing Coated Organic Semiconducting Thin Films. <i>Advanced Functional Materials</i> , 2017 , 27, 1605503	15.6	41
292	Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy. <i>Applied Physics Letters</i> , 2015 , 107, 252103	3.4	41
291	Temperature-induced transitions in the structure and interfacial rheology of human meibum. Biophysical Journal, 2012 , 102, 369-76	2.9	41

290	Structural and magnetic model of self-assembled FePt nanoparticle arrays. <i>Journal of Applied Physics</i> , 2004 , 96, 1197-1201	2.5	41
289	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Li-Ion and Li-Metal Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100372	21.8	41
288	NASICON Na3V2(PO4)3 Enables Quasi-Two-Stage Na+ and Zn2+ Intercalation for Multivalent Zinc Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 3028-3035	9.6	40
287	Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15717-15721	13	40
286	A Quantitative Correlation between the Mobility and Crystallinity of Photo-Cross-Linkable P3HT. <i>Macromolecules</i> , 2012 , 45, 3057-3062	5.5	40
285	A simple droplet pinning method for polymer film deposition for measuring charge transport in a thin film transistor. <i>Organic Electronics</i> , 2012 , 13, 2450-2460	3.5	40
284	Crystalline Structure in Thin Films of DEH P PV Homopolymer and PPV-b-PI Rod © oil Block Copolymers. <i>Macromolecules</i> , 2008 , 41, 58-66	5.5	40
283	Molecular structure of interfacial human meibum films. <i>Langmuir</i> , 2012 , 28, 11858-65	4	38
282	Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction. <i>Physical Review B</i> , 2005 , 72,	3.3	38
281	Emerging X-ray imaging technologies for energy materials. <i>Materials Today</i> , 2020 , 34, 132-147	21.8	38
280	Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. <i>Science Advances</i> , 2017 , 3, e1700270	14.3	37
279	Thickness dependence of exchange bias and structure in MnPt and MnNi spin valves. <i>Applied Physics Letters</i> , 2002 , 81, 4565-4567	3.4	37
278	Tuning the bandgap of CsAgBiBr through dilute tin alloying. <i>Chemical Science</i> , 2019 , 10, 10620-10628	9.4	37
277	Fluoroethylene Carbonate Induces Ordered Electrolyte Interface on Silicon and Sapphire Surfaces as Revealed by Sum Frequency Generation Vibrational Spectroscopy and X-ray Reflectivity. <i>Nano Letters</i> , 2018 , 18, 2105-2111	11.5	35
276	Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. Journal of Physical Chemistry Letters, 2018 , 9, 3463-3469	6.4	35
275	Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the OrganicMetal Oxide Interface. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20474-20484	3.8	35
274	High-fraction brookite films from amorphous precursors. <i>Scientific Reports</i> , 2017 , 7, 15232	4.9	35
273	Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers. ACS Applied Materials & Interfaces, 2014, 6, 19477-81	9.5	35

(2020-2011)

272	Solution-processed nanostructured benzoporphyrin with polycarbonate binder for photovoltaics. <i>Advanced Materials</i> , 2011 , 23, 2289-93	24	35
271	P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500396	6.4	35
270	Mixed Domains Enhance Charge Generation and Extraction in Bulk-Heterojunction Solar Cells with Small-Molecule Donors. <i>Advanced Energy Materials</i> , 2018 , 8, 1702941	21.8	34
269	Every Atom Counts: Elucidating the Fundamental Impact of Structural Change in Conjugated Polymers for Organic Photovoltaics. <i>Chemistry of Materials</i> , 2018 , 30, 2995-3009	9.6	33
268	Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. <i>ACS Applied Materials & Diffraces</i> , 2016 , 8, 1687-94	9.5	32
267	Fabrication of organic semiconductor crystalline thin films and crystals from solution by confined crystallization. <i>Organic Electronics</i> , 2012 , 13, 235-243	3.5	32
266	Microstructure of Oligofluorene Asymmetric Derivatives in Organic Thin Film Transistors. <i>Chemistry of Materials</i> , 2008 , 20, 2763-2772	9.6	32
265	X-ray absorption and diffraction studies of thin polymer/FePt nanoparticle assemblies. <i>Journal of Applied Physics</i> , 2003 , 93, 6299-6304	2.5	32
264	Impact of Polymer Side Chain Modification on OPV Morphology and Performance. <i>Chemistry of Materials</i> , 2018 , 30, 7872-7884	9.6	32
263	Self-Doping and Electrical Conductivity in Spinel Oxides: Experimental Validation of Doping Rules. <i>Chemistry of Materials</i> , 2014 , 26, 1867-1873	9.6	31
262	Strain development in nanoporous metallic foils formed by dealloying. <i>Applied Physics Letters</i> , 2008 , 92, 043118	3.4	31
261	Stoichiometryllnisotropy connections in epitaxial L10 FePt(001) films. <i>Journal of Applied Physics</i> , 2004 , 95, 7501-7503	2.5	31
260	Silicide formation and particle size growth in high-temperature-annealed, self-assembled FePt nanoparticles. <i>Journal of Applied Physics</i> , 2004 , 95, 6738-6740	2.5	31
259	The nanoscale structure of the electrolytethetal oxide interface. <i>Energy and Environmental Science</i> , 2018 , 11, 594-602	35.4	30
258	The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700771	4.6	30
257	Near Surface Structure of Solvent-free Processed Polyimide Thin Film. <i>Langmuir</i> , 1996 , 12, 2802-2806	4	30
256	Origin of Anisotropic Molecular Packing in Vapor-Deposited Alq3 Glasses. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 164-170	6.4	30
255	Subsurface Cooling Rates and Microstructural Response during Laser Based Metal Additive Manufacturing. <i>Scientific Reports</i> , 2020 , 10, 1981	4.9	29

254	Morphological, Chemical, and Electronic Changes of the Conjugated Polymer PTB7 with Thermal Annealing. <i>IScience</i> , 2018 , 2, 182-192	6.1	29
253	X-ray studies of magnetic nanoparticle assemblies. <i>Journal of Applied Physics</i> , 2003 , 93, 7343-7345	2.5	29
252	Heterogeneous Behavior of Lithium Plating during Extreme Fast Charging. <i>Cell Reports Physical Science</i> , 2020 , 1, 100114	6.1	29
251	Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 48, 69-83	4.2	29
250	Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1537-1543		28
249	Atomic structure at electrode interfaces. Synchrotron Radiation News, 1993, 6, 28-33	0.6	28
248	Structural depth profiling of iron oxide thin films using grazing incidence asymmetric Bragg x-ray diffraction. <i>Journal of Applied Physics</i> , 1989 , 65, 4763-4768	2.5	28
247	Highly Organized Smectic-like Packing in Vapor-Deposited Glasses of a Liquid Crystal. <i>Chemistry of Materials</i> , 2017 , 29, 849-858	9.6	27
246	Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. <i>Matter</i> , 2019 , 1, 180-191	12.7	27
245	Solution-Processable Distyryl Oligothiophene Semiconductors with Enhanced Environmental Stability. <i>Chemistry of Materials</i> , 2009 , 21, 1927-1938	9.6	27
244	Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. <i>Nature Materials</i> , 2021 , 20, 991-999	27	27
243	Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. <i>Chemistry of Materials</i> , 2017 , 29, 5931-5941	9.6	26
242	Impact of Hole Transport Layer Surface Properties on the Morphology of a Polymer-Fullerene Bulk Heterojunction. <i>Advanced Energy Materials</i> , 2014 , 4, 1301879	21.8	26
241	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1803418	15.6	26
240	Stable solvent for solution-based electrical doping of semiconducting polymer films and its application to organic solar cells. <i>Energy and Environmental Science</i> , 2018 , 11, 2216-2224	35.4	26
239	Negative-pressure polymorphs made by heterostructural alloying. <i>Science Advances</i> , 2018 , 4, eaaq1442	14.3	25
238	In situ X-ray-based imaging of nano materials. <i>Current Opinion in Chemical Engineering</i> , 2016 , 12, 14-21	5.4	25
237	Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO3. ACS Nano, 2016 , 10, 4565-9	16.7	25

(2006-2014)

236	Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications. <i>Journal of Synchrotron Radiation</i> , 2014 , 21, 1019-30	2.4	25	
235	Growth Trajectories and Coarsening Mechanisms of Metal Nanoparticle Electrocatalysts. <i>ChemCatChem</i> , 2012 , 4, 766-770	5.2	25	
234	Synthesis and characterization of K(8-x)(H2)ySi46. <i>Inorganic Chemistry</i> , 2010 , 49, 815-22	5.1	25	
233	Pressure-induced quenching of the charge-density-wave state in rare-earth tritellurides observed by x-ray diffraction. <i>Physical Review B</i> , 2009 , 79,	3.3	25	
232	Inducing Molecular Aggregation of Polymer Semiconductors in a Secondary Insulating Polymer Matrix to Enhance Charge Transport. <i>Chemistry of Materials</i> , 2020 , 32, 897-905	9.6	25	
231	Time-Resolved Structural Kinetics of an Organic Mixed Ionic-Electronic Conductor. <i>Advanced Materials</i> , 2020 , 32, e2003404	24	25	
230	Zinc Blende Magnesium Sulfide in Rechargeable Magnesium-Sulfur Batteries. <i>Chemistry of Materials</i> , 2018 , 30, 6318-6324	9.6	25	
229	Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. <i>ACS Applied Materials & District Materials </i>	9.5	24	
228	Clipped Random Wave Morphologies and the Analysis of the SAXS of an Ionomer Formed by Copolymerization of Tetrafluoroethylene and CF2?CFO(CF2)4SO3H. <i>Macromolecules</i> , 2009 , 42, 5774-57	7850 ⁵	24	
227	Asymmetric cation nonstoichiometry in spinels: Site occupancy in Co2ZnO4 and Rh2ZnO4. <i>Physical Review B</i> , 2011 , 84,	3.3	24	
226	Supercritical carbon dioxide extraction of porogens for the preparation of ultralow-dielectric-constant films. <i>Applied Physics Letters</i> , 2003 , 82, 4328-4330	3.4	24	
225	Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. <i>Nature Energy</i> , 2021 , 6, 642-6	55@ 2.3	24	
224	Effect of Solvent Additives on the Solution Aggregation of Phenyl-C61 B utyl Acid Methyl Ester (PCBM). <i>Chemistry of Materials</i> , 2015 , 27, 8261-8272	9.6	23	
223	Growth of Highly Strained CeO Ultrathin Films. ACS Nano, 2016, 10, 9938-9947	16.7	23	
222	Laser-Induced Keyhole Defect Dynamics during Metal Additive Manufacturing. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900455	3.5	23	
221	Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries 2013 ,		23	
220	Modified magnetic ground state in NiMn2O4 thin films. <i>Physical Review B</i> , 2010 , 82,	3.3	23	
219	Structural effect of PtRuIWO3 alloy nanostructures on methanol electrooxidation. <i>Electrochemistry Communications</i> , 2006 , 8, 359-363	5.1	23	

218	Temperature dependent chemical ordering in FePt(001) and FePt(110) films. <i>Journal of Applied Physics</i> , 2000 , 87, 6956-6958	2.5	23
217	Substrate-induced variations of molecular packing, dynamics, and intermolecular electronic couplings in pentacene monolayers on the amorphous silica dielectric. <i>ACS Nano</i> , 2014 , 8, 690-700	16.7	22
216	Operando Spectroscopic Microscopy of LiCoO2 Cathodes Outside Standard Operating Potentials. <i>Electrochimica Acta</i> , 2017 , 247, 977-982	6.7	22
215	The crystalline structure of copper phthalocyanine films on ZnO(1100). <i>Journal of the American Chemical Society</i> , 2012 , 134, 14302-5	16.4	22
214	Synthesis, solid-state, and charge-transport properties of conjugated polythiophene-S,S-dioxides. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 48-56	2.6	22
213	Insertion mechanism of a poly(ethylene oxide)-poly(butylene oxide) block copolymer into a DPPC monolayer. <i>Langmuir</i> , 2011 , 27, 11444-50	4	22
212	Thin Film Transistors Based on Alkylphenyl Quaterthiophenes: Structure and Electrical Transport Properties. <i>Chemistry of Materials</i> , 2007 , 19, 1355-1361	9.6	22
211	Impact of Processing on Structural and Compositional Evolution in Mixed Metal Halide Perovskites during Film Formation. <i>Advanced Functional Materials</i> , 2020 , 30, 2001752	15.6	22
210	Vapor-Deposited Glass Structure Determined by Deposition Rate-Substrate Temperature Superposition Principle. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 3536-3542	6.4	21
209	Sulfur-Donor Solvents Strongly Coordinate Pb2+ in Hybrid OrganicIhorganic Perovskite Precursor Solutions. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 14496-14502	3.8	21
208	Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance. <i>Chemistry of Materials</i> , 2012 , 24, 2583-2591	9.6	21
207	Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via Lithium Incorporation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17608-17612	3.8	21
206	Structural properties of epitaxial SrHfO3 thin films on Si (001). <i>Thin Solid Films</i> , 2010 , 518, S118-S122	2.2	21
205	Templating Organosilicate Vitrification Using Unimolecular Self-Organizing Polymers: Evolution of Morphology and Nanoporosity Development with Network Formation. <i>Advanced Materials</i> , 2005 , 17, 1031-1035	24	21
204	Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting Polymer Films by the Electrical-Blade Effect. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800110	6.4	21
203	Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 12441-12451	3.6	20
202	Vapor deposition of a nonmesogen prepares highly structured organic glasses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 21421-21426	11.5	20
201	Probing the effect of substrate heating during deposition of DCV4T:C60 blend layers for organic solar cells. <i>Organic Electronics</i> , 2012 , 13, 623-631	3.5	20

200	Engineering epitaxial EAl2O3 gate dielectric films on 4H-SiC. Journal of Applied Physics, 2007, 102, 10411	1 2 .5	20
199	Giant magnetoresistance at low fields in $[(NixFe1 otin)yAg1 otin]/Ag multilayers prepared by molecular-beam epitaxy. Journal of Applied Physics, 1994, 76, 3688-3694$	2.5	20
198	Instrumental effects on measurements of surface X-ray diffraction rods: resolution function and active sample area. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 1993 , 49, 624-642		20
197	Mechanism of Na+ Insertion in Alkali Vanadates and Its Influence on Battery Performance. <i>Advanced Energy Materials</i> , 2016 , 6, 1502336	21.8	20
196	Vapor-Deposited Glasses with Long-Range Columnar Liquid Crystalline Order. <i>Chemistry of Materials</i> , 2017 , 29, 9110-9119	9.6	19
195	Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1701552	21.8	19
194	Operando X-ray Studies of Crystalline Ge Anodes with Different Conductive Additives. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22772-22777	3.8	19
193	Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers. <i>ACS Applied Materials & Ma</i>	9.5	19
192	Two-dimensional GIWAXS reveals a transient crystal phase in solution-processed thermally converted tetrabenzoporphyrin. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 14557-67	3.4	19
191	Nanoscale phase separation in Fe3O4(111) films on sapphire(0001) and phase stability of Fe3O4(001) films on MgO(001) grown by oxygen-plasma-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2003 , 93, 5626-5636	2.5	19
190	Electrochemical ion insertion from the atomic to the device scale. <i>Nature Reviews Materials</i> , 2021 , 6, 847-867	73.3	19
189	Robust and Stretchable Polymer Semiconducting Networks: From Film Microstructure to Macroscopic Device Performance. <i>Chemistry of Materials</i> , 2019 , 31, 6530-6539	9.6	19
188	Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries. <i>Journal of Chemical Physics</i> , 2020 , 152, 084702	3.9	18
187	Synthesis of regioregular pentacene-containing conjugated polymers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7078		18
186	Roughness of molecularly thin perfluoropolyether polymer films. <i>Applied Physics Letters</i> , 2000 , 77, 3296	5-3,298	18
185	Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A6043-A6050	3.9	18
184	Behaviors of Fe, Zn, and Ga Substitution in CuInS2 Nanoparticles Probed with Anomalous X-ray Diffraction. <i>Chemistry of Materials</i> , 2013 , 25, 320-325	9.6	17
183	Extraction of pore-morphology and capillary pressure curves of porous media from synchrotron-based tomography data. <i>Scientific Reports</i> , 2015 , 5, 10635	4.9	17

182	Modular construction of P3HT/PCBM planar-heterojunction solar cells by lamination allows elucidation of processing Etructure Bunction relationships. <i>Organic Electronics</i> , 2011 , 12, 1963-1972	3.5	17
181	X-Ray Probes for In Situ Studies of Interfaces. <i>MRS Bulletin</i> , 2010 , 35, 504-513	3.2	17
180	Pore morphologies in disordered nanoporous thin films. <i>Langmuir</i> , 2004 , 20, 1535-8	4	17
179	High anisotropy CoPtCrB magnetic recording media. <i>Journal of Applied Physics</i> , 2003 , 94, 4018-4023	2.5	17
178	Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. <i>Energy and Environmental Science</i> , 2020 , 13, 4312-4321	35.4	17
177	In situ probing of the crystallization kinetics of rr-P3HT on single layer graphene as a function of temperature. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 8496-8503	3.6	16
176	Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn1\(\text{LaxSe}.\) Journal of Materials Chemistry A, 2017 , 5, 16873-16882	13	16
175	Water-in-Salt LiTFSI Aqueous Electrolytes. 1. Liquid Structure from Combined Molecular Dynamics Simulation and Experimental Studies. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 4501-4513	3.4	16
174	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by X-Ray Spectroscopy and Theory. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10880-10887	16.4	16
173	Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 4979-4988	35.4	16
172	Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor-Acceptor Polymer Single Chains. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5479-5486	6.4	15
171	Efficient energy sensitization of C60 and application to organic photovoltaics. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11920-8	16.4	15
170	Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells. <i>Chemistry of Materials</i> , 2013 , 25, 4354-4363	9.6	15
169	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. <i>Organic Electronics</i> , 2017 , 40, 79-87	3.5	15
168	X-Ray Absorption Spectroscopy Study of Structure and Stability of Disordered (Cu $_{\frac{5}{5}}$ SnS $_{\frac{5}{5}}$ SnS $_{\frac{5}{5}}$ SnS $_{\frac{5}{5}}$ SnS $_{\frac{5}{5}}$ Spectroscopy Study of Structure and Stability of Disordered (Cu $_{\frac{5}{5}}$ SnS $_{\frac{5}{5}}$ Sn	3.7	15
167	5,11-Conjugation-extended low-bandgap anthradithiophene-containing polymer exhibiting enhanced thin-film order and field-effect mobility. <i>Chemical Communications</i> , 2012 , 48, 7286-8	5.8	15
166	Effects of thermal annealing upon the nanomorphology of poly(3-hexylselenophene)-PCBM blends. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1454-60	4.8	15
165	Square grains in asymmetric rod-coil block copolymers. <i>Langmuir</i> , 2008 , 24, 1604-7	4	15

(2019-2004)

164	Supercritical CO2 extraction of porogen phase: An alternative route to nanoporous dielectrics. Journal of Materials Research, 2004 , 19, 3224-3233	2.5	15
163	Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering. <i>Journal of Applied Physics</i> , 2005 , 97, 093301	2.5	15
162	In Situ X-Ray-Diffraction Studies of Passive Oxide Films. MRS Bulletin, 1999, 24, 29-35	3.2	15
161	Comment on "Superstructures of Pb monolayers electrochemically deposited on Ag(111)". <i>Physical Review B</i> , 1994 , 49, 7793-7794	3.3	15
160	Microstructural Evolution of the Thin Films of a Donor Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. <i>Macromolecules</i> , 2018 , 51, 4325-4340	5.5	15
159	Registration of the rotation axis in X-ray tomography. <i>Journal of Synchrotron Radiation</i> , 2015 , 22, 452-7	2.4	14
158	FAxCs1🛮 PbI3 Nanocrystals: Tuning Crystal Symmetry by A-Site Cation Composition. <i>ACS Energy Letters</i> , 2020 , 5, 2475-2482	20.1	14
157	Degradation mechanisms in mixed-cation and mixed-halide CsxFA1\(\mathbb{R}\)Pb(Bryl1\(\mathbb{J}\))3 perovskite films under ambient conditions. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9302-9312	13	14
156	Role of Solution Structure in Self-Assembly of Conjugated Block Copolymer Thin Films. <i>Macromolecules</i> , 2016 , 49, 8187-8197	5.5	14
155	Understanding the selective etching of electrodeposited ZnO nanorods. <i>Langmuir</i> , 2014 , 30, 14079-85	4	14
155 154	Understanding the selective etching of electrodeposited ZnO nanorods. <i>Langmuir</i> , 2014 , 30, 14079-85 Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. <i>Angewandte Chemie</i> , 2011 , 123, 4292-4295	3.6	14
	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging.	<u>.</u>	
154	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie, 2011, 123, 4292-4295 Structural properties of epitaxial FAl2O3 (111) thin films on 4H-SiC (0001). Applied Physics Letters,	3.6	14
154 153	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie, 2011, 123, 4292-4295 Structural properties of epitaxial FAl2O3 (111) thin films on 4H-SiC (0001). Applied Physics Letters, 2007, 90, 061916 Small-angle neutron scattering measurements of magnetic cluster sizes in magnetic recording	3.6	14
154 153 152	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie, 2011, 123, 4292-4295 Structural properties of epitaxial EAl2O3 (111) thin films on 4H-SiC (0001). Applied Physics Letters, 2007, 90, 061916 Small-angle neutron scattering measurements of magnetic cluster sizes in magnetic recording disks. Applied Physics Letters, 2003, 82, 3050-3052	3.6 3.4 3.4	14 14
154 153 152 151	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie, 2011, 123, 4292-4295 Structural properties of epitaxial EAl2O3 (111) thin films on 4H-SiC (0001). Applied Physics Letters, 2007, 90, 061916 Small-angle neutron scattering measurements of magnetic cluster sizes in magnetic recording disks. Applied Physics Letters, 2003, 82, 3050-3052 Structure and epitaxy of anodic TiO2/Ti(110). Surface Science, 1992, 268, 57-72 Reduced crystallinity and enhanced charge transport by melt annealing of an organic	3.6 3.4 3.4	14 14 14
154 153 152 151 150	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie, 2011, 123, 4292-4295 Structural properties of epitaxial EAl2O3 (111) thin films on 4H-SiC (0001). Applied Physics Letters, 2007, 90, 061916 Small-angle neutron scattering measurements of magnetic cluster sizes in magnetic recording disks. Applied Physics Letters, 2003, 82, 3050-3052 Structure and epitaxy of anodic TiO2/Ti(110). Surface Science, 1992, 268, 57-72 Reduced crystallinity and enhanced charge transport by melt annealing of an organic semiconductor on single layer graphene. Journal of Materials Chemistry C, 2016, 4, 4143-4149 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1 Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1	3.6 3.4 3.4 1.8 7.1	14 14 14 14

146	Synthesis of Poly(bisisoindigo) Using a Metal-Free Aldol Polymerization for Thin-Film Transistor Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 14265-14271	9.5	13
145	Langmuir-Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles. <i>ACS Applied Materials</i> & Samp; Interfaces, 2018 , 10, 11995-12004	9.5	13
144	Experimental Characterization of a Theoretically Designed Candidate p-Type Transparent Conducting Oxide: Li-Doped Cr2MnO4. <i>Chemistry of Materials</i> , 2014 , 26, 4598-4604	9.6	13
143	Co3O4[Io2ZnO4 spinels: The case for a solid solution. <i>Journal of Solid State Chemistry</i> , 2012 , 190, 143-14	19 .3	13
142	Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4356		13
141	Spontaneous chemical ordering and exchange bias in epitaxial Mn0.52Pd0.48/Fe(001) bilayers prepared at room temperature. <i>Applied Physics Letters</i> , 2002 , 80, 808-810	3.4	13
140	Advanced Characterization in Clean Water Technologies. <i>Joule</i> , 2020 , 4, 1637-1659	27.8	13
139	Achieving High Thermoelectric Performance and Metallic Transport in Solvent-Sheared PEDOT:PSS. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001190	6.4	13
138	Mechanism of Additive-Assisted Room-Temperature Processing of Metal Halide Perovskite Thin Films. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 13, 13212-13225	9.5	13
137	Graphene induced electrical percolation enables more efficient charge transport at a hybrid organic semiconductor/graphene interface. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4422-4428	3.6	12
136	Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy. <i>Nanoscale</i> , 2016 , 8, 1849-53	7.7	12
135	Synthesis of Polycrystalline Ruddlesden B opper Organic Lead Halides and Their Growth Dynamics. <i>Chemistry of Materials</i> , 2019 , 31, 9472-9479	9.6	12
134	Reticulated Organic Photovoltaics. Advanced Functional Materials, 2012, 22, 1167-1173	15.6	12
133	In situ USAXS measurements of titania colloidal paint films during the drying process. <i>Journal of Colloid and Interface Science</i> , 2009 , 336, 612-5	9.3	12
132	Langmuir monolayers of straight-chain and branched hexadecanol and eicosanol mixtures. <i>Langmuir</i> , 2008 , 24, 14005-14	4	12
131	In Situ Synchrotron X-ray Diffraction Experiments on Electrochemically Deposited ZnO Nanostructures. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14863-14866	3.8	12
130	Elastic properties of chemically ordered Co3Pt thin films. <i>Journal of Applied Physics</i> , 2002 , 91, 2737-274	12.5	12
129	High-capacity thermochemical CO2 dissociation using iron-poor ferrites. <i>Energy and Environmental Science</i> , 2020 , 13, 592-600	35.4	12

128	Understanding additive controlled lithium morphology in lithium metal batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16960-16972	13	12
127	Tuning Intra and Intermolecular Interactions for Balanced Hole and Electron Transport in Semiconducting Polymers. <i>Chemistry of Materials</i> , 2020 , 32, 7338-7346	9.6	12
126	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23180-23187	16.4	12
125	Preferred crystallographic orientation of cellulose in plant primary cell walls. <i>Nature Communications</i> , 2020 , 11, 4720	17.4	12
124	Generic packing motifs in vapor-deposited glasses of organic semiconductors. <i>Soft Matter</i> , 2019 , 15, 7590-7595	3.6	11
123	Molecular Orientation for Vapor-Deposited Organic Glasses Follows Rate-Temperature Superposition: The Case of Posaconazole. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 2505-2513	3.4	11
122	Rapid thermal processing chamber for in-situ x-ray diffraction. <i>Review of Scientific Instruments</i> , 2015 , 86, 013902	1.7	11
121	Structure of oxidized bismuth nanoclusters. <i>Acta Crystallographica Section B: Structural Science</i> , 2007 , 63, 569-76		11
120	Cooling dynamics of two titanium alloys during laser powder bed fusion probed with in situ X-ray imaging and diffraction. <i>Materials and Design</i> , 2020 , 195, 108987	8.1	11
119	Beyond Local Solvation Structure: Nanometric Aggregates in Battery Electrolytes and Their Effect on Electrolyte Properties. <i>ACS Energy Letters</i> , 2022 , 7, 461-470	20.1	11
118	GIWAXS-SIIRkit: scattering intensity, indexing and refraction calculation toolkit for grazing-incidence wide-angle X-ray scattering of organic materials. <i>Journal of Applied Crystallography</i> , 2020 , 53, 1108-1129	3.8	10
117	Using resonant energy X-ray diffraction to extract chemical order parameters in ternary semiconductors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 4350-4356	7.1	10
116	Absence of Mixed Phase in Organic Photovoltaic Active Layers Facilitates Use of Green Solvent Processing. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 11136-11144	3.8	10
115	Point defects in Cu2ZnSnSe4 (CZTSe): Resonant X-ray diffraction study of the low-temperature order/disorder transition. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1700156	1.3	10
114	Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics. <i>Chemistry of Materials</i> , 2015 , 27, 1223-1232	9.6	10
113	Influence of Interfacial Layer Between Nanoparticles and Polymeric Matrix on Viscoelastic Properties of Hydrogel Nanocomposites. <i>Macromolecules</i> , 2009 , 42, 1331-1343	5.5	10
112	Charge density wave formation in R2Te5 (R=Nd, Sm, and Gd). <i>Physical Review B</i> , 2008 , 77,	3.3	10
111	Studies of Electrodes by in Situ X-Ray Scattering 1994 , 109-125		10

110	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. <i>Chemistry of Materials</i> , 2019 , 31, 9729-9741	9.6	10
109	Kinetic Versus Thermodynamic Orientational Preferences for a Series of Isomorphic Molecular Semiconductors. <i>ACS Omega</i> , 2018 , 3, 10198-10204	3.9	10
108	Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. <i>Chemistry of Materials</i> , 2021 , 33, 7315-7336	9.6	10
107	Alloying a single and a double perovskite: a Cu mixed-valence layered halide perovskite with strong optical absorption. <i>Chemical Science</i> , 2021 , 12, 8689-8697	9.4	10
106	Augmenting n-Type Performance of Ambipolar Top-Contact Organic Thin-Film Transistors by Self-Generated Interlayers. <i>Chemistry of Materials</i> , 2019 , 31, 7046-7053	9.6	9
105	Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor?. <i>ACS Applied Materials & Semiconductor</i> , 12, 26717-26726	9.5	9
104	Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement. <i>Chemistry of Materials</i> , 2020 , 32, 5604-5615	9.6	9
103	On twin density and resistivity of nanometric Cu thin films. <i>Journal of Applied Physics</i> , 2016 , 120, 06510	62.5	9
102	Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers. Journal of Physical Chemistry C, 2017 , 121, 26528-26538	3.8	9
101	A Supramolecular Complex in Small-Molecule Solar Cells based on Contorted Aromatic Molecules. <i>Angewandte Chemie</i> , 2012 , 124, 8722-8725	3.6	9
100	Synchrotron x-ray diffraction measurements of strain in metallic nanoparticles with oxide shells. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 075301	3	9
99	Structure and electrocatalysis of sputtered RuPt thin-film electrodes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12845-9	3.4	9
98	Local atomic structure of partially ordered NiMn in NiMn/NiFe exchange coupled layers: 1. XAFS measurements and structural refinement. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10406-18	3.4	9
97	Reduction of resistivity in Cu thin films by partial oxidation: Microstructural mechanisms. <i>Applied Physics Letters</i> , 2004 , 84, 2518-2520	3.4	9
96	X-ray diffraction from anodic TiO2 films: in situ and ex situ comparison of the Ti (0001) face. <i>Surface Science</i> , 1994 , 302, 341-349	1.8	9
95	Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant x-ray diffraction. <i>Applied Physics Letters</i> , 2016 , 109, 161901	3.4	9
94	Influence of amorphous structure on polymorphism in vanadia. APL Materials, 2016, 4, 076103	5.7	9
93	Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer. <i>Nano Letters</i> , 2016 , 16, 5247-54	11.5	9

(2021-2018)

92	Effect of Molecular Shape on the Properties of Non-Fullerene Acceptors: Contrasting Calamitic Versus 3D Design Principles. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6513-6523	6.1	9	
91	The effect of sub-oxide phases on the transparency of tin-doped gallium oxide. <i>Applied Physics Letters</i> , 2016 , 109, 141909	3.4	8	
90	Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes. <i>Langmuir</i> , 2011 , 27, 443	30 _‡ 8	8	
89	Electrochemical and electrochromic properties of nanoworm-shaped Ta2O5Pt thin-films. <i>Electrochemistry Communications</i> , 2005 , 7, 151-155	5.1	8	
88	Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films. <i>Journal of Non-Crystalline Solids</i> , 2019 , 505, 109-114	3.9	8	
87	Fullerene derivative induced morphology of bulk heterojunction blends: PIPCP:PCBM <i>RSC Advances</i> , 2019 , 9, 4106-4112	3.7	7	
86	Understanding the reactivity of CoCrMo-implant wear particles. Npj Materials Degradation, 2018, 2,	5.7	7	
85	Vanadium As a Potential Membrane Material for Carbon Capture: Effects of Minor Flue Gas Species. <i>Environmental Science & Environmental Science & Envi</i>	10.3	7	
84	Effects of aromatic regularity on the structure and conductivity of polyimide-poly(ethylene glycol) materials doped with ionic liquid. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 509-521	2.6	7	
83	Interplay between magnetism and chemical structure at spinel-spinel interfaces. <i>Journal of Applied Physics</i> , 2012 , 111, 093903	2.5	7	
82	Controlling spin ordering in frustrated magnets via thin film heteroepitaxy. <i>Physical Review B</i> , 2012 , 85,	3.3	7	
81	SAXSMorph: a program for generating representative morphologies for two-phase materials from small-angle X-ray and neutron scattering data. <i>Journal of Applied Crystallography</i> , 2011 , 44, 221-224	3.8	7	
80	Organic Solar Cells: How X-ray Scattering Has Improved Our Understanding of Morphology. <i>Synchrotron Radiation News</i> , 2010 , 23, 16-21	0.6	7	
79	Evolution of nanoscale roughness in Cu/SiO2 and Cu/Ta interfaces. <i>Applied Physics Letters</i> , 2012 , 100, 024106	3.4	7	
78	Compositional heterogeneity in CsyFA1¬Pb(BrxI1¬)3 perovskite films and its impact on phase behavior. <i>Energy and Environmental Science</i> ,	35.4	7	
77	Test of the Dynamic-Domain and Critical Scattering Hypotheses in Cubic Methylammonium Lead Triiodide. <i>Physical Review Letters</i> , 2020 , 125,	7.4	7	
76	Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A3806-A3819	3.9	7	
75	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by X-Ray Spectroscopy and Theory. <i>Angewandte Chemie</i> , 2021 , 133, 10975-10982	3.6	7	

74	Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. <i>Materials Horizons</i> , 2021 , 8, 1272-1285	14.4	7
73	Swelling of Polymer Dielectric Thin Films for Organic-Transistor-Based Aqueous Sensing Applications. <i>Chemistry of Materials</i> , 2013 , 25, 5018-5022	9.6	6
72	Crystal truncation rods from miscut surfaces. <i>Physical Review B</i> , 2017 , 95,	3.3	6
71	Unique Reversible Crystal-to-Crystal Phase TransitionBtructural and Functional Properties of Fused Ladder Thienoarenes. <i>Chemistry of Materials</i> , 2017 , 29, 7686-7696	9.6	6
70	Oxygen-enhanced IrMn spin valves deposited by ion-beam and magnetron sputtering. <i>Journal of Applied Physics</i> , 2001 , 89, 6925-6927	2.5	6
69	In-situ surface x-ray scattering of metal monolayers adsorbed at solid-liquid interfaces 1991 , 1550, 140		6
68	Synchrotron x-ray diffraction studies of the lattice and magnetic structure of epitaxial Dy films in LaF3/Dy/LaF3 sandwiches. <i>Journal of Applied Physics</i> , 1991 , 70, 4465-4468	2.5	6
67	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie</i> , 2020 , 132, 23380-23387	3.6	6
66	Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. <i>Energy and Environmental Science</i> , 2021 , 14, 4858-4867	35.4	6
65	Mixing Matters: Nanoscale Heterogeneity and Stability in Metal Halide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2022 , 7, 471-480	20.1	6
64	Molecular engineering to improve carrier lifetimes for organic photovoltaic devices with thick active layers. <i>Organic Electronics</i> , 2017 , 47, 57-65	3.5	5
63	Ptychography of Organic Thin Films at Soft X-ray Energies. <i>Chemistry of Materials</i> , 2019 , 31, 4913-4918	9.6	5
62	Triptycene as a Supramolecular Additive in PTB7:PCBM Blends and Its Influence on Photovoltaic Properties. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 24665-24678	9.5	5
61	Advanced X-ray Scattering and Spectroscopy Characterization of an Antisoiling Coating for Solar Module Glass. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7870-7878	6.1	5
60	In situ evolution of stress gradients in Cu films induced by capping layers. <i>Applied Physics Letters</i> , 2010 , 96, 261903	3.4	5
59	Interfacial effects in thin films of polymeric semiconductors. <i>Journal of Vacuum Science</i> & <i>Technology B</i> , 2008 , 26, 1454		5
58	XRD: X-Ray Diffraction 1992 , 198-213		5
57	Highly Reversible Plating/Stripping of Porous Zinc Anodes for Multivalent Zinc Batteries. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 140520	3.9	5

(2012-2021)

56	Scattering techniques for mixed donor-acceptor characterization in organic photovoltaics. <i>Materials Horizons</i> , 2021 ,	14.4	5	
55	Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 2761-2770	3.4	5	
54	Controlling Polymer Morphology in Blade-Coated All-Polymer Solar Cells. <i>Chemistry of Materials</i> , 2021 , 33, 5951-5961	9.6	5	
53	Water or Anion? Uncovering the Zn2+ Solvation Environment in Mixed Zn(TFSI)2 and LiTFSI Water-in-Salt Electrolytes. <i>ACS Energy Letters</i> ,3458-3463	20.1	5	
52	Theory-Guided Synthesis of a Metastable Lead-Free Piezoelectric Polymorph. <i>Advanced Materials</i> , 2018 , 30, e1800559	24	4	
51	Magnetization profile in antiferromagnetically coupled recording media. <i>Applied Physics Letters</i> , 2005 , 86, 162506	3.4	4	
50	Thickness Dependent Perpendicular Magnetic Domain Patterns in Sputtered Epitaxial FePt (001) L10 Films. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 517, 319		4	
49	Using In Situ High-Energy X-ray Diffraction to Quantify Electrode Behavior of Li-Ion Batteries from Extreme Fast Charging. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11590-11598	6.1	4	
48	Stable Glasses of Organic Semiconductor Resist Crystallization. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 461-466	3.4	4	
47	Hydrogen Purification in Palladium-Based Membranes: An Operando X-ray Diffraction Study. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 926-934	3.9	4	
46	In Situ Characterization of Ferroelectric HfO2 During Rapid Thermal Annealing. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000598	2.5	4	
45	Compositional engineering of tin-lead halide perovskites for efficient and stable low band gap solar cells 2018 ,		4	
44	Orientation-Dependent Distortion of Lamellae in a Block Copolymer Electrolyte under DC Polarization. <i>Macromolecules</i> , 2021 , 54, 7808-7821	5.5	4	
43	Quantification of Efficiency in Lithium Metal Negative Electrodes via Operando X-ray Diffraction. <i>Chemistry of Materials</i> , 2021 , 33, 7537-7545	9.6	4	
42	Surface structure of coherently strained ceria ultrathin films. <i>Physical Review B</i> , 2016 , 94,	3.3	3	
41	Self-assembly of cholesterol tethered within hydrogel networks. <i>Polymer</i> , 2016 , 84, 371-382	3.9	3	
40	Mitigating residual stress in Cu metallization. <i>Applied Physics Letters</i> , 2012 , 101, 231906	3.4	3	
39	Effect of sintering conditions on mixed ionic-electronic conducting properties of silver sulfide nanoparticles. <i>Journal of Applied Physics</i> , 2012 , 111, 053530	2.5	3	

38	Applications of synchrotron X-rays in microelectronics industry research. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2005 , 241, 247-252	1.2	3
37	Surface equilibration mechanism controls the molecular packing of glassy molecular semiconductors at organic interfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
36	Morphology of Organic Semiconductors Electrically Doped from Solution Using Phosphomolybdic Acid. <i>Chemistry of Materials</i> , 2019 , 31, 6677-6683	9.6	2
35	Multifunctional Optical Coatings and Light Management for Photovoltaics 2019 , 153-173		2
34	Chemical Evolution of CoCrMo Wear Particles: An in Situ Characterization Study. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 9894-9901	3.8	2
33	Polyimide-PEG Segmented Block Copolymer Membranes with High Proton Conductivity by Improving Bicontinuous Nanostructure of Ionic Liquid-Doped Films. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900006	2.6	2
32	Tunable mesoscale-structured self-assembled hydrogels synthesized by organocatalytic ring-opening polymerization. <i>Polymer</i> , 2015 , 65, 93-104	3.9	2
31	Operando Transmission X-ray Microscopy Studies on Li-lon Batteries. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1526-1527	0.5	2
30	Understanding stress gradients in microelectronic metallization. <i>Powder Diffraction</i> , 2012 , 27, 92-98	1.8	2
29	Enrichment of deuterium oxide at hydrophilic interfaces in aqueous solutions. <i>Langmuir</i> , 2007 , 23, 119	43 ₄ 6	2
28	Summary Abstract: Low-energy electron diffraction study of the phases and phase transitions of oxygen physisorbed on graphite. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1984 , 2, 898-898	2.9	2
27	Hybrid Nanostructured Ni(OH)2/NiO for High-Capacity Lithium-Ion Battery Anodes. <i>Journal of Electrochemical Energy Conversion and Storage</i> , 2020 , 17,	2	2
26	Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealing. <i>Journal of Materials Chemistry C</i> ,	7.1	2
25	Unraveling the Unconventional Order of a High-Mobility Indacenodithiophene-Benzothiadiazole Copolymer <i>ACS Macro Letters</i> , 2021 , 10, 1306-1314	6.6	2
24	Synthesis and Crystallization of Atomic Layer Deposition Œucryptite LiAlSiO Thin-Film Solid Electrolytes. <i>ACS Applied Materials & Electrolytes</i> , 12, 56935-56942	9.5	2
23	Organic thin-film microstructure characterization 2019 , 489-528		1
22	Understanding Chemomechanical Li-ion Cathode Degradation through Multi-Scale, Multi-Modal X-ray Spectromicroscopy. <i>Microscopy and Microanalysis</i> , 2018 , 24, 426-427	0.5	1
21	Effect of Extensional Flow on the Evaporative Assembly of a DonorAcceptor Semiconducting Polymer. ACS Applied Electronic Materials, 2019, 1, 2445-2454	4	1

20	High-resolution x-ray analysis of graphene grown on 4H-SiC ((000bar 1)) at low pressures. <i>Journal of Materials Research</i> , 2014 , 29, 439-446	2.5	1
19	Preparation of crystalline dielectric modification silane layer by spin-coating and its improvements on organic transistor performance 2009 ,		1
18	Ion Beam Stabilization of FePt Nanoparticle Arrays for Magnetic Storage Media. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 777, 651		1
17	X-ray scattering studies of the passive oxide film formed on iron. <i>Synchrotron Radiation News</i> , 1998 , 11, 5-11	0.6	1
16	In Situ X-Ray Scattering of Monolayers Adsorbed at Electrochemical Interfaces <i>Materials Research Society Symposia Proceedings</i> , 1988 , 143, 37		1
15	Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor <i>Journal of Chemical Physics</i> , 2022 , 156, 014504	3.9	1
14	Covalently Linked, Two-Dimensional Quantum Dot Assemblies. <i>Langmuir</i> , 2020 , 36, 9944-9951	4	1
13	High Power Energy Storage via Electrochemically Expanded and Hydrated Manganese-Rich Oxides. <i>Frontiers in Chemistry</i> , 2020 , 8, 715	5	1
12	Why it is important to determine and report the impact of probe radiation. <i>Joule</i> , 2022 , 6, 723-725	27.8	1
11	Kinetic origins of the metastable zone width in the manganese oxide Pourbaix diagram. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7857-7867	13	O
10	Twisted A-D-A Type Acceptors with Thermally-Activated Delayed Crystallization Behavior for Efficient Nonfullerene Organic Solar Cells. <i>Advanced Energy Materials</i> ,2103957	21.8	О
9	Dynamic spectro-microscopy of nanoparticle growth and corrosion 2016 , 901-902		
8	Optoelectronic Devices: Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment (Adv. Mater. 12/2016). <i>Advanced Materials</i> , 2016 , 28, 2463-2463	24	
7	MBE Growth of Artificially-Layered Magnetic Metal Structures 1995 , 623-668		
6	X-Ray Studies of Energy Materials 2020 , 1803-1824		
5	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. <i>MRS Bulletin</i> ,1-14	3.2	
4	X-Ray Studies of Energy Materials 2019 , 1-22		
3	Using X-ray Spectromicroscopy for Operando Characterization of Li-S Batteries. <i>Microscopy and Microanalysis</i> , 2018 , 24, 440-441	0.5	

Increased crystallite size in thin films of C60 and p-terphenyls via PDMS-assisted crystallization.

Journal of Materials Chemistry C, 2022, 10, 5657-5665

7.1

Phonons in Metal Halide Perovskites **2022**, 1-35