
Roland G Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990642/publications.pdf Version: 2024-02-01

POLAND C. MINKLED

#	Article	IF	CITATIONS
1	Simulating wet active polymers by multiparticle collision dynamics. Physical Review E, 2022, 105, 015310.	0.8	3
2	Path integral description of semiflexible active Brownian polymers. Journal of Chemical Physics, 2022, 156, 064105.	1.2	6
3	Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion. Communications Physics, 2022, 5, .	2.0	27
4	Alignment and propulsion of squirmer pusher–puller dumbbells. Journal of Chemical Physics, 2022, 156, .	1.2	3
5	Dynamics of active polar ring polymers. Physical Review E, 2022, 105, .	0.8	11
6	Wall-anchored semiflexible polymer under large amplitude oscillatory shear flow. Journal of Chemical Physics, 2021, 154, 224901.	1.2	4
7	Active bath-induced localization and collapse of passive semiflexible polymers. Journal of Chemical Physics, 2021, 155, 044902.	1.2	11
8	Editorial: Motile active matter. European Physical Journal E, 2021, 44, 103.	0.7	2
9	Hydrodynamics of immiscible binary fluids with viscosity contrast: a multiparticle collision dynamics approach. Soft Matter, 2021, 17, 7978-7990.	1.2	3
10	Flagellar arrangements in elongated peritrichous bacteria: bundle formation and swimming properties. European Physical Journal E, 2021, 44, 17.	0.7	3
11	DNA Self-Assembly Mediated by Programmable Soft-Patchy Interactions. ACS Nano, 2020, 14, 13524-13535.	7.3	6
12	Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Soft Matter, 2020, 16, 10676-10687.	1.2	16
13	The physics of active polymers and filaments. Journal of Chemical Physics, 2020, 153, 040901.	1.2	86
14	Flow driven transitions of polyelectrolytes. Journal of Rheology, 2020, 64, 1121-1131.	1.3	2
15	Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study. Soft Matter, 2020, 16, 4866-4875.	1.2	15
16	Hydrodynamics of polymers in an active bath. Physical Review E, 2020, 101, 052612.	0.8	19
17	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	0.7	242
18	Computational models for activeÂmatter. Nature Reviews Physics, 2020, 2, 181-199.	11.9	192

4

#	Article	IF	CITATIONS
19	Enhanced Rotational Motion of Spherical Squirmer in Polymer Solutions. Physical Review Letters, 2020, 124, 068001.	2.9	47
20	Reconfigurable structure and tunable transport in synchronized active spinner materials. Science Advances, 2020, 6, eaaz8535.	4.7	51
21	Rheotaxis of spheroidal squirmers in microchannel flow: Interplay of shape, hydrodynamics, active stress, and thermal fluctuations. Physical Review Research, 2020, 2, .	1.3	16
22	Hydrodynamics in Motile Active Matter. , 2020, , 1471-1491.		1
23	Local stress and pressure in an inhomogeneous system of spherical active Brownian particles. Scientific Reports, 2019, 9, 6608.	1.6	30
24	Tethered Semiflexible Polymer under Large Amplitude Oscillatory Shear. Polymers, 2019, 11, 737.	2.0	5
25	Active Brownian filaments with hydrodynamic interactions: conformations and dynamics. Soft Matter, 2019, 15, 3957-3969.	1.2	38
26	Active Brownian ring polymers. Journal of Chemical Physics, 2019, 150, 064913.	1.2	33
27	Hydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations. Journal of Chemical Physics, 2019, 151, 194110.	1.2	2
28	Steady state sedimentation of ultrasoft colloids. Journal of Chemical Physics, 2018, 148, 084901.	1.2	18
29	Hydrodynamics of binary-fluid mixtures —An augmented Multiparticle Collison Dynamics approach. Europhysics Letters, 2018, 121, 24003.	0.7	9
30	Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition. Science Advances, 2018, 4, eaao7086.	4.7	90
31	Confined active Brownian particles: theoretical description of propulsion-induced accumulation. New Journal of Physics, 2018, 20, 015001.	1.2	111
32	Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. Soft Matter, 2018, 14, 92-103.	1.2	26
33	Clustering of microswimmers: interplay of shape and hydrodynamics. Soft Matter, 2018, 14, 8590-8603.	1.2	105
34	Weak Shape Anisotropy Leads to a Nonmonotonic Contribution to Crowding, Impacting Protein Dynamics under Physiologically Relevant Conditions. Journal of Physical Chemistry B, 2018, 122, 12396-12402.	1.2	15
35	Active Brownian Filamentous Polymers under Shear Flow. Polymers, 2018, 10, 837.	2.0	22

Hydrodynamics in Motile Active Matter. , 2018, , 1-21.

#	Article	IF	CITATIONS
37	Solvent Induced Inversion of Core–Shell Microgels. ACS Macro Letters, 2017, 6, 721-725.	2.3	30
38	Internal dynamics of semiflexible polymers with active noise. Journal of Chemical Physics, 2017, 146, 154903.	1.2	74
39	Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review. Journal of the Physical Society of Japan, 2017, 86, 101014.	0.7	79
40	Conformational and dynamical properties of semiflexible polymers in the presence of active noise. AIP Conference Proceedings, 2017, , .	0.3	11
41	Active turbulence in a gas of self-assembled spinners. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12870-12875.	3.3	118
42	Spatial correlations of hydrodynamic fluctuations in simple fluids under shear flow: A mesoscale simulation study. Physical Review E, 2017, 96, 062617.	0.8	5
43	Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results. Polymers, 2017, 9, 15.	2.0	38
44	Conformational Properties of Active Semiflexible Polymers. Polymers, 2016, 8, 304.	2.0	95
45	Propagating interfaces in mixtures of active and passive Brownian particles. New Journal of Physics, 2016, 18, 123030.	1.2	61
46	Internal dynamics of microgels: A mesoscale hydrodynamic simulation study. Journal of Chemical Physics, 2016, 145, 244902.	1.2	24
47	Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. Science Advances, 2016, 2, e1601432.	4.7	55
48	Universal conformational properties of polymers in ionic nanogels. Scientific Reports, 2016, 6, 19836.	1.6	42
49	Dynamic Structure Factor of Core–Shell Microgels: A Neutron Scattering and Mesoscale Hydrodynamic Simulation Study. Macromolecules, 2016, 49, 3608-3618.	2.2	23
50	Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matter, 2016, 12, 7372-7385.	1.2	72
51	Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study. Soft Matter, 2016, 12, 8316-8326.	1.2	24
52	From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study. Physical Review E, 2016, 93, 032604.	0.8	23
53	Microswimmers – From Single Particle Motion to Collective Behavior. European Physical Journal: Special Topics, 2016, 225, 2061-2064.	1.2	17
54	Low Reynolds number hydrodynamics and mesoscale simulations. European Physical Journal: Special Topics, 2016, 225, 2079-2097.	1.2	23

#	Article	IF	CITATIONS
55	Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics. Journal of Computational Physics, 2016, 314, 14-34.	1.9	21
56	Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow. Soft Matter, 2016, 12, 3737-3749.	1.2	23
57	Shape Change of Micelles Dragged with Constant Velocity as Addressed in Terms of Biolubrication Application. Acta Physica Polonica A, 2016, 129, 188-189.	0.2	2
58	Effect of angular momentum conservation on hydrodynamic simulations of colloids. Physical Review E, 2015, 92, 013301.	0.8	17
59	Hydrodynamic correlations in shear flow: Multiparticle-collision-dynamics simulation study. Physical Review E, 2015, 92, 053002.	0.8	8
60	Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow. Journal of Chemical Physics, 2015, 143, 243117.	1.2	12
61	Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip. Scientific Reports, 2015, 5, 9586.	1.6	77
62	Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments. Soft Matter, 2015, 11, 7337-7344.	1.2	20
63	Thermostat for nonequilibrium multiparticle-collision-dynamics simulations. Physical Review E, 2015, 91, 013310.	0.8	41
64	Bulk viscosity of multiparticle collision dynamics fluids. Physical Review E, 2015, 91, 033309.	0.8	17
65	Virial pressure in systems of spherical active Brownian particles. Soft Matter, 2015, 11, 6680-6691.	1.2	123
66	Physics of microswimmers—single particle motion and collective behavior: a review. Reports on Progress in Physics, 2015, 78, 056601.	8.1	1,029
67	Modelling the mechanics and hydrodynamics of swimming E. coli. Soft Matter, 2015, 11, 7867-7876.	1.2	94
68	Dynamical and rheological properties of soft colloid suspensions. Current Opinion in Colloid and Interface Science, 2014, 19, 594-610.	3.4	68
69	Hydrodynamics of discrete-particle models of spherical colloids: A multiparticle collision dynamics simulation study. Physical Review E, 2014, 90, 033314.	0.8	41
70	Structure of Microgels with Debye–Hückel Interactions. Polymers, 2014, 6, 1602-1617.	2.0	59
71	Conformational State Distributions and Catalytically Relevant Dynamics ofÂa Hinge-Bending Enzyme Studied by Single-Molecule FRET and a Coarse-Grained Simulation. Biophysical Journal, 2014, 107, 1913-1923.	0.2	23
72	Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study. Soft Matter, 2014, 10, 5894-5904.	1.2	29

#	Article	IF	CITATIONS
73	Cooperative motion of active Brownian spheres in three-dimensional dense suspensions. Europhysics Letters, 2014, 105, 48004.	0.7	201
74	Structure and Dynamics of a Compact State of a Multidomain Protein, the Mercuric Ion Reductase. Biophysical Journal, 2014, 107, 393-400.	0.2	19
75	Scaffold Structures by Telechelic Rodlike Polymers: Nonequilibrium Structural and Rheological Properties under Shear Flow. Macromolecules, 2014, 47, 6946-6954.	2.2	10
76	Self-Organized Structures of Attractive End-Functionalized Semiflexible Polymer Suspensions. Macromolecules, 2014, 47, 4118-4125.	2.2	23
77	Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations. Computer Physics Communications, 2014, 185, 495-503.	3.0	46
78	Hydrodynamic correlations and diffusion coefficient of star polymers in solution. Journal of Chemical Physics, 2014, 141, 084901.	1.2	30
79	Mesoscale hydrodynamics simulations of particle suspensions under shear flow: From hard to ultrasoft colloids. European Physical Journal: Special Topics, 2013, 222, 2773-2786.	1.2	7
80	Dynamical and Rheological Properties of Ultrasoft Colloids under Shear Flow. Macromolecules, 2013, 46, 8026-8036.	2.2	36
81	Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution. Journal of Chemical Physics, 2013, 138, 144902.	1.2	37
82	Strong and Weak Polyelectrolyte Adsorption onto Oppositely Charged Curved Surfaces. Advances in Polymer Science, 2013, , 1-56.	0.4	22
83	Multiparticle collision dynamics simulations of viscoelastic fluids: Shear-thinning Gaussian dumbbells. Journal of Chemical Physics, 2013, 138, 104903.	1.2	19
84	Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: A multiparticle collision dynamics study. Journal of Chemical Physics, 2013, 138, 054901.	1.2	26
85	Synchronization of rigid microrotors by time-dependent hydrodynamic interactions. Physical Review E, 2013, 88, 023012.	0.8	27
86	Synchronization, Slippage, and Unbundling of Driven Helical Flagella. PLoS ONE, 2013, 8, e70868.	1.1	61
87	Confinement-induced screening of hydrodynamic interactions and spinodal decomposition: Multiscale simulations of colloid-polymer mixtures. Europhysics Letters, 2012, 100, 46003.	0.7	3
88	Semiflexible polymers under external fields confined to two dimensions. Journal of Chemical Physics, 2012, 137, 244909.	1.2	10
89	Conformational and dynamical properties of ultra-soft colloids in semi-dilute solutions under shear flow. Journal of Physics Condensed Matter, 2012, 24, 464103.	0.7	18
90	Hydrodynamic correlations in multiparticle collision dynamics fluids. Physical Review E, 2012, 86, 056711.	0.8	69

#	Article	IF	CITATIONS
91	Flow-Induced Helical Coiling of Semiflexible Polymers in Structured Microchannels. Physical Review Letters, 2012, 109, 178101.	2.9	44
92	Non-Equilibrium Properties of Semidilute Polymer Solutions under Shear Flow. Journal of Physics: Conference Series, 2012, 392, 012003.	0.3	9
93	Non-equilibrium relaxation and tumbling times of polymers in semidilute solution. Journal of Physics Condensed Matter, 2012, 24, 284131.	0.7	19
94	Synchronization and bundling of anchored bacterial flagella. Soft Matter, 2012, 8, 4363.	1.2	111
95	Semidilute solutions of ultra-soft colloids under shear flow. Soft Matter, 2012, 8, 4109.	1.2	38
96	Role of fluid-density correlations in hydrodynamics: a multiparticle collision dynamics simulation study. Soft Matter, 2012, 8, 9886.	1.2	6
97	Polyelectrolyte Adsorption onto Oppositely Charged Interfaces: Image-Charge Repulsion and Surface Curvature. Journal of Physical Chemistry B, 2012, 116, 9838-9845.	1.2	43
98	Polyelectrolyte adsorption onto oppositely charged interfaces: unified approach for plane, cylinder, and sphere. Physical Chemistry Chemical Physics, 2011, 13, 11686.	1.3	46
99	Backtracking of Colloids: A Multiparticle Collision Dynamics Simulation Study. Journal of Physical Chemistry B, 2011, 115, 14263-14268.	1.2	19
100	Chain Dynamics of Ring and Linear Polyethylene Melts from Molecular Dynamics Simulations. Macromolecules, 2011, 44, 2311-2315.	2.2	96
101	Tumbling of polymers in semidilute solution under shear flow. Europhysics Letters, 2011, 93, 54004.	0.7	45
102	Semiflexible polymer conformation, distribution and migration in microcapillary flows. Journal of Physics Condensed Matter, 2011, 23, 184117.	0.7	17
103	Nonequilibrium Forces between Dragged Ultrasoft Colloids. Physical Review Letters, 2011, 107, 158301.	2.9	28
104	Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. Journal of Chemical Physics, 2011, 135, 134116.	1.2	19
105	Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations. Journal of Computational Physics, 2010, 229, 168-177.	1.9	115
106	Conformational and rheological properties of semiflexible polymers in shear flow. Journal of Chemical Physics, 2010, 133, 164905.	1.2	75
107	Migration of semiflexible polymers in microcapillary flow. Europhysics Letters, 2010, 91, 14001.	0.7	63
108	Semidilute Polymer Solutions at Equilibrium and under Shear Flow. Macromolecules, 2010, 43, 10107-10116.	2.2	154

#	Article	IF	CITATIONS
109	Multi-particle collision dynamics simulations of sedimenting colloidal dispersions in confinement. Faraday Discussions, 2010, 144, 245-252.	1.6	24
110	Equivalence of statistical ensembles in stretching single flexible polymers. Soft Matter, 2010, 6, 6183.	1.2	32
111	Stress tensors of multiparticle collision dynamics fluids. Journal of Chemical Physics, 2009, 130, 074907.	1.2	50
112	Mesoscale hydrodynamic simulation of short polyelectrolytes in electric fields. Journal of Chemical Physics, 2009, 131, 234905.	1.2	37
113	Direct observation of hydrodynamic instabilities in a driven non-uniform colloidal dispersion. Soft Matter, 2009, 5, 1340.	1.2	64
114	Polyelectrolyte electrophoresis: Field effects and hydrodynamic interactions. Europhysics Letters, 2008, 83, 38004.	0.7	77
115	Mesoscale hydrodynamics simulations of attractive rod-like colloids in shear flow. Journal of Physics Condensed Matter, 2008, 20, 404209.	0.7	13
116	Mesoscale simulations of polymer dynamics in microchannel flows. Europhysics Letters, 2008, 83, 34007.	0.7	55
117	Attractive Colloidal Rods in Shear Flow. Physical Review Letters, 2008, 101, 168302.	2.9	71
118	Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. Advances in Polymer Science, 2008, , 1.	0.4	28
119	Diffusion and segmental dynamics of rodlike molecules by fluorescence correlation spectroscopy. Journal of Chemical Physics, 2007, 127, 054904.	1.2	32
120	Adsorption of Weakly Charged Polyelectrolytes onto Oppositely Charged Spherical Colloidsâ€. Journal of Physical Chemistry B, 2007, 111, 8486-8493.	1.2	37
121	Hydrodynamic screening of star polymers in shear flow. European Physical Journal E, 2007, 23, 349-354.	0.7	77
122	Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres. Journal of Chemical Physics, 2006, 125, 064904.	1.2	43
123	Comparison of Ring and Linear Polyethylene from Molecular Dynamics Simulations. Macromolecules, 2006, 39, 3975-3977.	2.2	108
124	Intramolecular dynamics of linear macromolecules by fluorescence correlation spectroscopy. Physical Review E, 2006, 73, 041919.	0.8	59
125	Diffusion and Segmental Dynamics of Double-Stranded DNA. Physical Review Letters, 2006, 97, 258101.	2.9	97
126	Semiflexible Polymers in Shear Flow. Physical Review Letters, 2006, 97, 128301.	2.9	107

#	Article	IF	CITATIONS
127	Critical Adsorption of Polyelectrolytes onto Charged Spherical Colloids. Physical Review Letters, 2006, 96, 066103.	2.9	60
128	Star Polymers in Shear Flow. Physical Review Letters, 2006, 96, 188302.	2.9	138
129	Simulation of complex fluids by multi-particle-collision dynamics. Computer Physics Communications, 2005, 169, 326-330.	3.0	16
130	Dynamics of polymers in a particle-based mesoscopic solvent. Journal of Chemical Physics, 2005, 123, 144905.	1.2	133
131	Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Physical Review E, 2005, 72, 016701.	0.8	142
132	Simple Model for Overcharging of a Sphere by a Wrapped Oppositely Charged Asymmetrically Neutralized Polyelectrolyte:Â Possible Effects of Helical Charge Distribution. Journal of Physical Chemistry B, 2005, 109, 2962-2969.	1.2	33
133	Complexation of semiflexible chains with oppositely charged cylinder. Journal of Chemical Physics, 2004, 120, 9394-9400.	1.2	49
134	Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhysics Letters, 2004, 68, 106-112.	0.7	144
135	Rod-like colloids and polymers in shear flow: a multi-particle-collision dynamics study. Journal of Physics Condensed Matter, 2004, 16, S3941-S3954.	0.7	65
136	Universal properties of complexes formed by two oppositely charged flexible polyelectrolytes. New Journal of Physics, 2004, 6, 11-11.	1.2	19
137	Structure of polyelectrolyte solutions: influence of salt and chain flexibility. Macromolecular Symposia, 2004, 211, 55-70.	0.4	3
138	Self-consistent integral equation theory for solutions of finite extensible semiflexible polyelectrolyte chains. Journal of Chemical Physics, 2003, 118, 6624-6633.	1.2	19
139	Influence of salt on the structure of polyelectrolyte solutions: An integral equation theory approach. Journal of Chemical Physics, 2003, 119, 2406-2413.	1.2	20
140	Deformation of semiflexible chains. Journal of Chemical Physics, 2003, 118, 2919.	1.2	103
141	Complex formation in systems of oppositely charged polyelectrolytes: A molecular dynamics simulation study. Physical Review E, 2002, 66, 021802.	0.8	72
142	Virial pressure of periodic systems with long range forces. Journal of Chemical Physics, 2002, 117, 2449-2450.	1.2	14
143	Integral equation theory approach to rodlike polyelectrolytes: Counterion condensation. Journal of Chemical Physics, 2001, 114, 10181-10188.	1.2	33
144	Hydration of beta-cyclodextrin: a molecular dynamics simulation study. Journal of Computer-Aided Molecular Design, 2000, 14, 659-667.	1.3	48

#	Article	IF	CITATIONS
145	Dynamics of a polymer chain in an elongational flow. Physical Review E, 2000, 61, 2840-2847.	0.8	10
146	Topologically induced glass transition in dense polymer systems. Journal of Chemical Physics, 2000, 112, 3051-3062.	1.2	11
147	Orderâ^'Disorder Transition in Surface-Induced Nanopattern of Diblock Copolymer Films. Macromolecules, 2000, 33, 150-157.	2.2	53
148	On the dynamics of polymer melts: Contribution of Rouse and bending modes. Europhysics Letters, 1999, 45, 488-494.	0.7	33
149	Analytical Calculation of the Relaxation Dynamics of Partially Stretched Flexible Chain Molecules: Necessity of a Wormlike Chain Description. Physical Review Letters, 1999, 82, 1843-1846.	2.9	26
150	Comment on "Chain Motion in an Unentangled Polyethylene Melt: A Critical Test of the Rouse Model by Molecular Dynamics Simulations and Neutron Spin Echo Spectroscopy― Physical Review Letters, 1999, 82, 2408-2408.	2.9	23
151	Surface Micellar Nanopattern Formation of Adsorbed Diblock Copolymer Systems. Macromolecules, 1999, 32, 3495-3501.	2.2	51
152	Nanopattern of Diblock Copolymers Selectively Adsorbed on a Plane Surface. Langmuir, 1999, 15, 7290-7298.	1.6	69
153	Influence of Polydispersity on the Dynamic Structure Factor of Macromolecules in Dilute Solution. Macromolecules, 1999, 32, 5956-5960.	2.2	19
154	Collapse of Polyelectrolyte Macromolecules by Counterion Condensation and Ion Pair Formation: A Molecular Dynamics Simulation Study. Physical Review Letters, 1998, 80, 3731-3734.	2.9	240
155	Initial decay rate of the dynamic structure factor of polymer molecules in solution. Journal of Chemical Physics, 1998, 109, 5160-5161.	1.2	8
156	Influence of stiffness on the dynamics of macromolecules in a melt. Journal of Chemical Physics, 1997, 106, 2469-2476.	1.2	50
157	Equilibrium properties of polyampholytes in electric fields. Journal of Chemical Physics, 1997, 106, 2841-2849.	1.2	24
158	Remarks on the Interpretation of Dynamic Light Scattering from Gellan in Dilute Solution. Macromolecules, 1997, 30, 6974-6976.	2.2	13
159	Tapping Scanning Force Microscopy in AirTheory and Experiment. Langmuir, 1997, 13, 4699-4703.	1.6	52
160	Contact Angle Microscopy on a Carbosilane Dendrimer with Hydroxyl End Groups:  Method for Mesoscopic Characterization of the Surface Structure. Langmuir, 1997, 13, 4172-4181.	1.6	53
161	Functionality dependence for molecular nonaffine deformation of polymer networks. Polymer, 1997, 38, 4049-4052.	1.8	3
162	Distribution functions and dynamical properties of stiff macromolecules. Macromolecular Theory and Simulations, 1997, 6, 1007-1035.	0.6	35

#	Article	IF	CITATIONS
163	Dynamic structure factor of semiflexible macromolecules in dilute solution. Journal of Chemical Physics, 1996, 104, 6355-6368.	1.2	142
164	Molecular dynamics simulation study of the dynamics of fluids in thin films. Journal of Chemical Physics, 1996, 104, 8103-8111.	1.2	15
165	Molecular dynamics simulation study of the dynamics of fluids at solidâ€liquid interfaces. Macromolecular Symposia, 1996, 106, 353-366.	0.4	0
166	Imaging material properties by resonant tapping-force microscopy: A model investigation. Physical Review B, 1996, 54, 8908-8912.	1.1	136
167	Molecular dynamics simulation study of adsorption of polymer chains with variable degree of rigidity. I. Static properties. Journal of Chemical Physics, 1996, 104, 4806-4813.	1.2	73
168	Time reversible and phaseâ€space conserving molecular dynamics at constant temperature. Journal of Chemical Physics, 1995, 102, 9018-9025.	1.2	14
169	Forces affecting the substrate in resonant tapping force microscopy. Nanotechnology, 1995, 6, 40-44.	1.3	134
170	Microscopic Nonaffine Deformation of Polydisperse Polymer Networks. Macromolecules, 1995, 28, 5906-5909.	2.2	9
171	Stochastic Dynamics Simulations of n-Alkane Melts Confined between Solid Surfaces: Influence of Surface Properties and Comparison with Scheutjens-Fleer Theory. Macromolecules, 1995, 28, 165-173.	2.2	39
172	Dynamic properties of molecular chains with variable stiffness. Journal of Chemical Physics, 1995, 102, 7750-7757.	1.2	99
173	Comparative molecular dynamics simulation study of the benzene–graphite and the benzene–1,12â€dodecanediol–graphite interface. Journal of Chemical Physics, 1994, 100, 3930-3939.	1.2	16
174	Random Copolymers with Short-Range Interaction in the Equilibrium State: Mean Field Approximation and Numerical Studies. Physical Review Letters, 1994, 73, 1602-1604.	2.9	8
175	Analytical model for the microscopic nonaffine deformation of polymer networks. Journal of Chemical Physics, 1994, 101, 2532-2538.	1.2	18
176	Molecular dynamics simulations ofn-Alkane melts confined between solid surfaces. International Journal of Quantum Chemistry, 1994, 52, 437-456.	1.0	18
177	Are the continuum and the lattice representation of freely jointed chains equivalent?. Macromolecular Theory and Simulations, 1994, 3, 575-583.	0.6	7
178	Models and equilibrium properties of stiff molecular chains. Journal of Chemical Physics, 1994, 101, 8119-8129.	1.2	141
179	Equilibrium and dynamical properties of gaussian stiff chain molecules. Macromolecular Symposia, 1994, 81, 91-99.	0.4	9
180	Molecular dynamics simulation studies of a complex fluid â€solid interface ―the benzeneâ€alkaneâ€graphite system. Macromolecular Symposia, 1994, 81, 213-219.	0.4	0

#	Article	IF	CITATIONS
181	Influence of microscopic nonâ€affinity and functionality on the deformation of polymeric networks. Macromolecular Symposia, 1994, 81, 129-137.	0.4	1
182	Molecular dynamics simulation study of the adsorption of chain alkanes from solution onto graphite. Journal of Chemical Physics, 1993, 99, 5528-5534.	1.2	57
183	Partition function and force extension relation for a generalized freely jointed chain. Macromolecules, 1993, 26, 6085-6091.	2.2	32
184	Liquid benzene confined between graphite surfaces. A constant pressure molecular dynamics study. Journal of Chemical Physics, 1993, 99, 5405-5417.	1.2	31
185	Constant pressure molecular dynamics: Instantaneous external stress tensor in systems with periodic boundary conditions. Makromolekulare Chemie Macromolecular Symposia, 1993, 65, 11-17.	0.6	Ο
186	Reptation of polymer chains: A combined Monte Carlo and molecular-dynamics study. Physical Review B, 1993, 48, 581-584.	1.1	13
187	Stochastic dynamics simulations of polymethylene melts confined between solid surfaces. Journal of Chemical Physics, 1993, 98, 729-736.	1.2	52
188	Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscillator. Physical Review A, 1992, 45, 2250-2255.	1.0	39
189	Novel molecular dynamics simulations at constant pressure. Molecular Physics, 1992, 75, 669-688.	0.8	30
190	Finite size distribution and partition functions of Gaussian chains: maximum entropy approach. Macromolecules, 1992, 25, 6891-6896.	2.2	36
191	Computer simulations of nâ€alkane melts. Journal of Chemical Physics, 1991, 95, 4709-4714.	1.2	31
192	Force-length relation for a short freely jointed chain: mass and volume dependence. Colloid and Polymer Science, 1991, 269, 1090-1098.	1.0	0
193	Dynamical Calculation of Entropy Elastic Forces in Molecular Chains. Europhysics Letters, 1989, 8, 493-497.	0.7	11
194	Deterministic chaos in the dynamics of a freely jointed molecular chain. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 141, 264-268.	0.9	5
195	Chaotic dynamics and entropy elastic forces of chain molecules. Makromolekulare Chemie Macromolecular Symposia, 1989, 30, 215-221.	0.6	4
196	Model calculation of the temperature dependence of triplet exciton E.S.R. line shapes for local exciton phonon interaction. Molecular Physics, 1987, 60, 1283-1313.	0.8	9
197	Temperature dependence of the triplet exciton ESR line shape in dimers. Journal of Luminescence, 1987, 38, 102-103.	1.5	0
198	Temperature Dependence of Resonance Splittings in Molecular Pairs. Comparison of Optical Experiments and Theoretical Results for the Phenazine Triplet State. Physica Status Solidi (B): Basic Research, 1986, 137, 137-147.	0.7	3

#	Article	IF	CITATIONS
199	Polyelectrolyte Theory. Advances in Polymer Science, 0, , 67-111.	0.4	140