
Richard Michelmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ancestral Chromosomes for Family Peronosporaceae Inferred from a Telomere-to-Telomere Genome Assembly of <i>Peronospora effusa</i> . Molecular Plant-Microbe Interactions, 2022, 35, 450-463.	1.4	9
2	Viral Load Among Vaccinated and Unvaccinated, Asymptomatic and Symptomatic Persons Infected With the SARS-CoV-2 Delta Variant. Open Forum Infectious Diseases, 2022, 9, ofac135.	0.4	40
3	Variance of allele balance calculated from low coverage sequencing data infers departure from a diploid state. BMC Bioinformatics, 2022, 23, 150.	1.2	1
4	Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens. Theoretical and Applied Genetics, 2022, 135, 2481-2500.	1.8	6
5	Identification of Major Quantitative Trait Loci Controlling Field Resistance to Downy Mildew in Cultivated Lettuce (<i>Lactuca sativa</i>). Phytopathology, 2021, 111, 541-547.	1.1	8
6	Genetics of robustness under nitrogen―and waterâ€deficient conditions in fieldâ€grown lettuce. Crop Science, 2021, 61, 1582-1619.	0.8	3
7	Identification and mapping of new genes for resistance to downy mildew in lettuce. Theoretical and Applied Genetics, 2021, 134, 519-528.	1.8	11
8	High-resolution genetic dissection of the major QTL for tipburn resistance in lettuce, Lactuca sativa. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
9	A Composite Analysis of Flowering Time Regulation in Lettuce. Frontiers in Plant Science, 2021, 12, 632708.	1.7	24
10	Isolating an active and inactive CACTA transposon from lettuce color mutants and characterizing their family. Plant Physiology, 2021, 186, 929-944.	2.3	5
11	Drone phenotyping and machine learning enable discovery of loci regulating daily floral opening in lettuce. Journal of Experimental Botany, 2021, 72, 2979-2994.	2.4	8
12	AFLAP: assembly-free linkage analysis pipeline using k-mers from genome sequencing data. Genome Biology, 2021, 22, 115.	3.8	8
13	Genetics of Partial Resistance Against <i>Verticillium dahliae</i> Race 2 in Wild and Cultivated Lettuce. Phytopathology, 2021, 111, 842-849.	1.1	12
14	The genetic basis of waterâ€use efficiency and yield in lettuce. BMC Plant Biology, 2021, 21, 237.	1.6	8
15	Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.). Theoretical and Applied Genetics, 2021, 134, 3473-3487.	1.8	2
16	Hypersensitivity to triforine in lettuce is triggered by a TNL gene through the diseaseâ€resistance pathway. Plant Biotechnology Journal, 2021, 19, 2144-2146.	4.1	1
17	Pseudomonas syringae effector HopZ3 suppresses the bacterial AvrPto1–tomato PTO immune complex via acetylation. PLoS Pathogens, 2021, 17, e1010017.	2.1	10
18	Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnology Journal, 2020, 18, 479-490.	4.1	56

#	Article	IF	CITATIONS
19	Phytopathogen Effectors Use Multiple Mechanisms to Manipulate Plant Autophagy. Cell Host and Microbe, 2020, 28, 558-571.e6.	5.1	28
20	Identification of Factors Affecting the Deterioration Rate of Fresh-Cut Lettuce in Modified Atmosphere Packaging. Food and Bioprocess Technology, 2020, 13, 1997-2011.	2.6	14
21	Upregulation of a <i>KN1</i> homolog by transposon insertion promotes leafy head development in lettuce. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33668-33678.	3.3	35
22	Genome-Wide Analysis of Cyclophilin Proteins in 21 Oomycetes. Pathogens, 2020, 9, 24.	1.2	3
23	Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathogens, 2020, 16, e1009012.	2.1	30
24	Title is missing!. , 2020, 16, e1009012.		0
25	Title is missing!. , 2020, 16, e1009012.		0
26	Title is missing!. , 2020, 16, e1009012.		0
27	Title is missing!. , 2020, 16, e1009012.		0
28	The LsVe1L allele provides a molecular marker for resistance to Verticillium dahliae race 1 in lettuce. BMC Plant Biology, 2019, 19, 305.	1.6	13
29	The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genetics, 2019, 15, e1008373.	1.5	184
30	Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nature Communications, 2019, 10, 4310.	5.8	41
31	Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nature Communications, 2019, 10, 2645.	5.8	67
32	The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theoretical and Applied Genetics, 2019, 132, 2439-2460.	. 1.8	25
33	Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 2019, 132, 2209-2222.	1.8	34
34	The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51, 877-884.	9.4	439
35	Genetic analysis of resistance to bacterial leaf spot in the heirloom lettuce cultivar Reine des Glaces. Molecular Breeding, 2019, 39, 1.	1.0	11
36	High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of <i>NCED4</i> in Lettuce (<i>Lactuca sativa</i>). G3: Genes, Genomes, Genetics, 2018, 8, 1513-1521.	0.8	83

#	Article	IF	CITATIONS
37	Molecular markers reliably predict post-harvest deterioration of fresh-cut lettuce in modified atmosphere packaging. Horticulture Research, 2018, 5, 21.	2.9	15
38	Comparative genomics of downy mildews reveals potential adaptations to biotrophy. BMC Genomics, 2018, 19, 851.	1.2	59
39	Genome-wide functional analyses of plant coiled–coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biology, 2018, 16, e2005821.	2.6	52
40	From Short Reads to Chromosome-Scale Genome Assemblies. Methods in Molecular Biology, 2018, 1848, 151-197.	0.4	7
41	Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs. Scientific Reports, 2018, 8, 7914.	1.6	77
42	Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications, 2017, 8, 14953.	5.8	330
43	Genetics of resistance in lettuce to races 1 and 2 of Verticillium dahliae from different host species. Euphytica, 2017, 213, 1.	0.6	16
44	RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nature Communications, 2017, 8, 2264.	5.8	133
45	Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of <i>ETHYLENE RESPONSE FACTOR1</i> (<i>ERF1</i>). Plant Physiology, 2016, 170, 472-488.	2.3	39
46	Detection and Quantification of <i>Bremia lactucae</i> by Spore Trapping and Quantitative PCR. Phytopathology, 2016, 106, 1426-1437.	1.1	39
47	Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica, 2016, 210, 309-326.	0.6	80
48	The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48, 438-446.	9.4	761
49	Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa). Horticulture Research, 2015, 2, 15055.	2.9	27
50	Genome Sequence and Architecture of the Tobacco Downy Mildew Pathogen <i>Peronospora tabacina</i> . Molecular Plant-Microbe Interactions, 2015, 28, 1198-1215.	1.4	70
51	Ultra-High Density, Transcript-Based Genetic Maps of Pepper Define Recombination in the Genome and Synteny Among Related Species. G3: Genes, Genomes, Genetics, 2015, 5, 2341-2355.	0.8	23
52	Hostâ€induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnology Journal, 2015, 13, 875-883.	4.1	116
53	Genome-Wide Architecture of Disease Resistance Genes in Lettuce. G3: Genes, Genomes, Genetics, 2015, 5, 2655-2669.	0.8	54
54	Acetylation of an NB-LRR Plant Immune-Effector Complex Suppresses Immunity. Cell Reports, 2015, 13, 1670-1682.	2.9	78

#	Article	IF	CITATIONS
55	Dissection of Two Complex Clusters of Resistance Genes in Lettuce (Lactuca sativa). Molecular Plant-Microbe Interactions, 2015, 28, 751-765.	1.4	20
56	Wheat rusts never sleep but neither do sequencers: will pathogenomics transform the way plant diseases are managed?. Genome Biology, 2015, 16, 44.	3.8	15
57	Resistance to Downy Mildew in Lettuce â€~La Brillante' is Conferred by <i>Dm50</i> Gene and Multiple QTL. Phytopathology, 2015, 105, 1220-1228.	1.1	20
58	Distinctive profiles of small RNA couple inverted repeat-induced post-transcriptional gene silencing with endogenous RNA silencing pathways in <i>Arabidopsis</i> . Rna, 2014, 20, 1987-1999.	1.6	16
59	A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences, 2014, 2, 1300085.	0.8	178
60	Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments. Ecology and Evolution, 2014, 4, 2395-2409.	0.8	28
61	Genetic analysis of safflower domestication. BMC Plant Biology, 2014, 14, 43.	1.6	40
62	Differential interactions between strains of <i><scp>R</scp>hizorhapis</i> , <i><scp>S</scp>phingobium</i> , <i><scp>S</scp>phingopyxis</i> or <i><scp>R</scp>hizorhabdus</i> and accessions of <i><scp>L</scp>actuca</i> spp. with respect to severity of corky root disease. Plant Pathology, 2014, 63, 1053-1061.	1.2	10
63	A mixed-model QTL analysis for salt tolerance in seedlings of crop-wild hybrids of lettuce. Molecular Breeding, 2014, 34, 1389-1400.	1.0	10
64	The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars. Horticulture Research, 2014, 1, 14066.	2.9	20
65	Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ, 2014, 2, e415.	0.9	111
66	An intra-specific linkage map of lettuce (Lactuca sativa) and genetic analysis of postharvest discolouration traits. Theoretical and Applied Genetics, 2013, 126, 2737-2752.	1.8	18
67	Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theoretical and Applied Genetics, 2013, 126, 3065-3079.	1.8	47
68	<scp>RNA</scp> seqâ€based transcriptome analysis of <i><scp>L</scp>actuca sativa</i> infected by the fungal necrotroph <i><scp>B</scp>otrytis cinerea</i> . Plant, Cell and Environment, 2013, 36, 1992-2007.	2.8	129
69	Impacts of Resistance Gene Genetics, Function, and Evolution on a Durable Future. Annual Review of Phytopathology, 2013, 51, 291-319.	3.5	131
70	An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce. G3: Genes, Genomes, Genetics, 2013, 3, 617-631.	0.8	91
71	Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Scientific Reports, 2013, 3, 2875.	1.6	40
72	The Role of TIR-NBS and TIR-X Proteins in Plant Basal Defense Responses. Plant Physiology, 2013, 162, 1459-1472.	2.3	150

5

#	Article	IF	CITATIONS
73	Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip. PLoS ONE, 2013, 8, e56200.	1.1	99
74	Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride. PLoS ONE, 2013, 8, e55913.	1.1	37
75	Type III Secretion and Effectors Shape the Survival and Growth Pattern of <i>Pseudomonas syringae</i> on Leaf Surfaces Â. Plant Physiology, 2012, 158, 1803-1818.	2.3	70
76	Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop–wild hybrids under drought, salinity and nutrient deficiency conditions. Theoretical and Applied Genetics, 2012, 125, 1097-1111.	1.8	23
77	Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. American Journal of Botany, 2012, 99, 209-218.	0.8	80
78	Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.). BMC Genomics, 2012, 13, 185.	1.2	36
79	Advances in Arachis genomics for peanut improvement. Biotechnology Advances, 2012, 30, 639-651.	6.0	258
80	Agroecology: A Review from a Global-Change Perspective. Annual Review of Environment and Resources, 2011, 36, 193-222.	5.6	191
81	Mapping a dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids. Euphytica, 2011, 182, 157-166.	0.6	14
82	A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, 2011, 122, 95-108.	1.8	59
83	The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante. Theoretical and Applied Genetics, 2011, 123, 509-517.	1.8	93
84	Effective Population Size Is Positively Correlated with Levels of Adaptive Divergence among Annual Sunflowers. Molecular Biology and Evolution, 2011, 28, 1569-1580.	3.5	88
85	Next Generation Sequencing Provides Rapid Access to the Genome of Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust. PLoS ONE, 2011, 6, e24230.	1.1	169
86	<i>Arabidopsis thaliana</i> Genes Encoding Defense Signaling and Recognition Proteins Exhibit Contrasting Evolutionary Dynamics. Genetics, 2009, 181, 671-684.	1.2	41
87	Proteolysis of a Negative Regulator of Innate Immunity Is Dependent on Resistance Genes in Tomato and <i>Nicotiana benthamiana</i> and Induced by Multiple Bacterial Effectors Â. Plant Cell, 2009, 21, 2458-2472.	3.1	74
88	<i>Rin4</i> Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid. Plant Cell, 2009, 21, 3368-3378.	3.1	146
89	Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1. BMC Plant Biology, 2009, 9, 135.	1.6	47
90	The genomic architecture of disease resistance in lettuce. Theoretical and Applied Genetics, 2009, 118, 565-580.	1.8	66

6

#	Article	IF	CITATIONS
91	Development, polymorphism, and cross-taxon utility of EST–SSR markers from safflower (Carthamus) Tj ETQq1	1.0,78431 1.8	.4ggBT /Ov
92	Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of <i>Pseudomonas</i> and <i>Ralstonia</i> Â Â Â. Plant Physiology, 2009, 150, 1733-1749.	2.3	100
93	Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. European Journal of Plant Pathology, 2008, 122, 19-30.	0.8	50
94	Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Molecular Genetics and Genomics, 2008, 280, 111-125.	1.0	94
95	Frequent sequence exchanges between homologs of <i>RPP8</i> in Arabidopsis are not necessarily associated with genomic proximity. Plant Journal, 2008, 54, 69-80.	2.8	47
96	Transâ€specific gene silencing between host and parasitic plants. Plant Journal, 2008, 56, 389-397.	2.8	143
97	Multiple Paleopolyploidizations during the Evolution of the Compositae Reveal Parallel Patterns of Duplicate Gene Retention after Millions of Years. Molecular Biology and Evolution, 2008, 25, 2445-2455.	3.5	322
98	Evolution and Genetic Population Structure of Prickly Lettuce (Lactuca serriola) and Its RGC2 Resistance Gene Cluster. Genetics, 2008, 178, 1547-1558.	1.2	34
99	Discovery of ADP-Ribosylation and Other Plant Defense Pathway Elements Through Expression Profiling of Four Different <i>Arabidopsis–Pseudomonas R-avr</i> Interactions. Molecular Plant-Microbe Interactions, 2008, 21, 646-657.	1.4	57
100	Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. , 2008, , 19-30.		1
101	Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript-Level Variation in Arabidopsis. Genetics, 2007, 175, 1441-1450.	1.2	352
102	QTLs for shelf life in lettuce co-locate with those for leaf biophysical properties but not with those for leaf developmental traits. Journal of Experimental Botany, 2007, 58, 1433-1449.	2.4	44
103	Natural Variation among Arabidopsis thaliana Accessions for Transcriptome Response to Exogenous Salicylic Acid. Plant Cell, 2007, 19, 2099-2110.	3.1	101
104	Natural Variation in the Pto Disease Resistance Gene Within Species of Wild Tomato (Lycopersicon). II. Population Genetics of Pto. Genetics, 2007, 175, 1307-1319.	1.2	77
105	Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant Journal, 2007, 51, 803-818.	2.8	109
106	Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, 2007, 7, 56.	1.6	166
107	A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theoretical and Applied Genetics, 2007, 115, 735-46.	1.8	97
108	Plant NBS-LRR proteins: adaptable guards. Genome Biology, 2006, 7, 212.	13.9	804

#	Article	IF	CITATIONS
109	Analyses of Synteny Between Arabidopsis thaliana and Species in the Asteraceae Reveal a Complex Network of Small Syntenic Segments and Major Chromosomal Rearrangements. Genetics, 2006, 173, 2227-2235.	1.2	29
110	The disease resistance geneDm3is infrequent in natural populations ofLactuca serrioladue to deletions and frequent gene conversions at theRGC2locus. Plant Journal, 2006, 47, 38-48.	2.8	34
111	Identification and comparison of natural rubber from two Lactuca species. Phytochemistry, 2006, 67, 2590-2596.	1.4	59
112	High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Research, 2006, 16, 787-795.	2.4	179
113	Genomic Survey of Gene Expression Diversity in Arabidopsis thaliana. Genetics, 2006, 172, 1179-1189.	1.2	104
114	Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 2005, 3, 259-273.	4.1	487
115	Quantitative trait loci associated with seed and seedling traits in Lactuca. Theoretical and Applied Genetics, 2005, 111, 1365-1376.	1.8	81
116	Functional Analysis of the Plant Disease Resistance Gene Pto Using DNA Shuffling. Journal of Biological Chemistry, 2005, 280, 23073-23083.	1.6	20
117	Multiple Genetic Processes Result in Heterogeneous Rates of Evolution within the Major Cluster Disease Resistance Genes in Lettuce[W]. Plant Cell, 2004, 16, 2870-2894.	3.1	276
118	The Maintenance of Extreme Amino Acid Diversity at the Disease Resistance Gene,RPP13, inArabidopsis thaliana. Genetics, 2004, 166, 1517-1527.	1.2	240
119	Insensitivity to the Fungicide Fosetyl-Aluminum in California Isolates of the Lettuce Downy Mildew Pathogen, Bremia lactucae. Plant Disease, 2004, 88, 502-508.	0.7	76
120	The impact zone: genomics and breeding for durable disease resistance. Current Opinion in Plant Biology, 2003, 6, 397-404.	3.5	78
121	A genetic map of the lettuce downy mildew pathogen, Bremia lactucae, constructed from molecular markers and avirulence genes. Fungal Genetics and Biology, 2003, 39, 16-30.	0.9	30
122	SNP-based codominant markers for a recessive gene conferring resistance to corky root rot (Rhizomonas suberifaciens) in lettuce (Lactuca sativa). Genome, 2003, 46, 1059-1069.	0.9	23
123	Genome-Wide Analysis of NBS-LRR–Encoding Genes in Arabidopsis[W]. Plant Cell, 2003, 15, 809-834.	3.1	1,457
124	Patterns of Positive Selection in the Complete NBS-LRR Gene Family of Arabidopsis thaliana. Genome Research, 2002, 12, 1305-1315.	2.4	278
125	Dm3 Is One Member of a Large Constitutively Expressed Family of Nucleotide Binding Site—Leucine-Rich Repeat Encoding Genes. Molecular Plant-Microbe Interactions, 2002, 15, 251-261.	1.4	83
126	Functional Analyses of the Pto Resistance Gene Family in Tomato and the Identification of a Minor Resistance Determinant in a Susceptible Haplotype. Molecular Plant-Microbe Interactions, 2002, 15, 281-291.	1.4	64

#	Article	IF	CITATIONS
127	TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant Journal, 2002, 32, 77-92.	2.8	241
128	Functional Studies of the Bacterial Avirulence Protein AvrPto by Mutational Analysis. Molecular Plant-Microbe Interactions, 2001, 14, 451-459.	1.4	29
129	Recombination and Spontaneous Mutation at the Major Cluster of Resistance Genes in Lettuce (Lactuca sativa). Genetics, 2001, 157, 831-849.	1.2	88
130	avrPto Enhances Growth and Necrosis Caused by Pseudomonas syringae pv. tomato in Tomato Lines Lacking Either Pto or Prf. Molecular Plant-Microbe Interactions, 2000, 13, 568-571.	1.4	81
131	Genomic approaches to plant disease resistance. Current Opinion in Plant Biology, 2000, 3, 125-131.	3.5	83
132	Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theoretical and Applied Genetics, 2000, 101, 1066-1073.	1.8	124
133	Mapping morphological genes relative to molecular markers in lettuce (Lactuca sativa L.). Heredity, 1999, 82, 245-251.	1.2	30
134	Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. EMBO Journal, 1999, 18, 3232-3240.	3.5	140
135	Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp Theoretical and Applied Genetics, 1999, 99, 405-418.	1.8	56
136	Identification of PCR-based markers flanking the recessive LMV resistance gene mo1 in an intraspecific cross in lettuce. Genome, 1999, 42, 982-986.	0.9	11
137	Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant Journal, 1999, 20, 317-332.	2.8	729
138	The Major Resistance Gene Cluster in Lettuce Is Highly Duplicated and Spans Several Megabases. Plant Cell, 1998, 10, 1817-1832.	3.1	290
139	Clusters of Resistance Genes in Plants Evolve by Divergent Selection and a Birth-and-Death Process. Genome Research, 1998, 8, 1113-1130.	2.4	942
140	Resistance Gene Candidates Identified by PCR with Degenerate Oligonucleotide Primers Map to Clusters of Resistance Genes in Lettuce. Molecular Plant-Microbe Interactions, 1998, 11, 815-823.	1.4	213
141	Receptor-like Genes in the Major Resistance Locus of Lettuce Are Subject to Divergent Selection. Plant Cell, 1998, 10, 1833-1846.	3.1	288
142	The Major Resistance Gene Cluster in Lettuce Is Highly Duplicated and Spans Several Megabases. Plant Cell, 1998, 10, 1817.	3.1	29
143	Receptor-Like Genes in the Major Resistance Locus of Lettuce Are Subject to Divergent Selection. Plant Cell, 1998, 10, 1833.	3.1	15
144	A Transgenic Mutant of Lactuca sativa (Lettuce) with a T-DNA Tightly Linked to Loss of Downy Mildew Resistance. Molecular Plant-Microbe Interactions, 1997, 10, 970-977.	1.4	24

#	Article	IF	CITATIONS
145	Construction of a bacterial artificial chromosome library containing large Eco RI and Hin dIII genomic fragments of lettuce. Theoretical and Applied Genetics, 1997, 94, 390-399.	1.8	118
146	Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science, 1996, 274, 2063-2065.	6.0	532
147	Molecular analysis of irradiation-induced and spontaneous deletion mutants at a disease resistance locus inLactuca sativa. Molecular Genetics and Genomics, 1996, 251, 316-325.	2.4	22
148	Flood warning — resistance genes unleashed. Nature Genetics, 1996, 14, 376-378.	9.4	21
149	Sources and genetic structure of a cluster of genes for resistance to three pathogens in lettuce. Theoretical and Applied Genetics, 1995, 91, 178-188.	1.8	82
150	Rapid mapping of two genes for resistance to downy mildew from Lactuca serriola to existing clusters of resistance genes. Theoretical and Applied Genetics, 1994, 89, 96-104.	1.8	71
151	Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers Genetics, 1994, 136, 1435-1446.	1.2	175
152	Mutants of downy mildew resistance in Lactuca sativa (lettuce) Genetics, 1994, 137, 867-874.	1.2	23
153	Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 1993, 85, 985-993.	1.8	1,169
154	Two Classes of Chromosome-Sized Molecules Are Present in Bremia lactucae. Experimental Mycology, 1993, 17, 284-300.	1.8	31
155	Expression and antisense inhibition of transgenes in Phytophthora infestons is modulated by choice of promoter and position effects. Gene, 1993, 133, 63-69.	1.0	58
156	Temperature and genotype interactions in the expression of host resistance in lettuce downy mildew. Physiological and Molecular Plant Pathology, 1992, 40, 233-245.	1.3	29
157	Regulatory sequences for expressing genes in oomycete fungi. Molecular Genetics and Genomics, 1992, 234, 138-146.	2.4	60
158	Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome, 1991, 34, 1021-1027.	0.9	203
159	Transient expression of genes in the oomycete Phytophthora infestans using Bremia lactucae regulatory sequences. Current Genetics, 1991, 19, 453-459.	0.8	45
160	Variation at RFLP loci in <i>Lactuca</i> spp. and origin of cultivated lettuce (<i>L</i> . <i>sativa</i>). Genome, 1991, 34, 430-436.	0.9	123
161	Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9828-9832.	3.3	4,074
162	Transformation of the Oomycete Pathogen, <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 1991, 4, 602.	1.4	167

#	Article	IF	CITATIONS
163	Genome size and complexity of the obligate fungal pathogen, Bremia lactucae. Experimental Mycology, 1990, 14, 299-309.	1.8	37
164	Highly Abundant and Stage-Specific mRNAs in the Obligate PathogenBremia lactucae. Molecular Plant-Microbe Interactions, 1990, 3, 225.	1.4	25
165	Structure and expression of a gene encoding heat-shock protein Hsp70 from the Oomycete fungus Bremia lactucae. Gene, 1989, 79, 207-217.	1.0	41
166	Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms Genetics, 1988, 120, 947-958.	1.2	246
167	Molecular Markers for Genetic Analysis of Phytopathogenic Fungi. Annual Review of Phytopathology, 1987, 25, 383-404.	3.5	139
168	Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa L.). Theoretical and Applied Genetics, 1987, 74, 646-653.	1.8	96
169	Resistance in Lactuca spp. to Microdochium panattoniana (lettuce anthracnose). Euphytica, 1987, 36, 609-614.	0.6	12
170	Genetic analysis of factors for resistance to downy mildew (Bremia lactucae) in species of lettuce (Lactuca sativa and L. serriola). Plant Pathology, 1987, 36, 499-514.	1.2	102
171	A Genetic Map of Lettuce (<i>Lactuca sativa</i> L.) With Restriction Fragment Length Polymorphism, Isozyme, Disease Resistance and Morphological Markers. Genetics, 1987, 116, 331-337.	1.2	244
172	Linkage analysis of genes for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa). Theoretical and Applied Genetics, 1985, 70, 520-528.	1.8	78
173	The inheritance of virulence in Bremia lactucae to match resistance factors 3, 4, 5, 6, 8, 9, 10 and 11 in lettuce (Lactuca sativa). Plant Pathology, 1984, 33, 301-315.	1.2	47
174	Nucleation rates of ice in undercooled water and aqueous solutions of polyethylene glycol. Cryobiology, 1982, 19, 163-171.	0.3	75