
Yanfang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/599037/publications.pdf Version: 2024-02-01

YANFANC FENC

#	Article	IF	CITATIONS
1	Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: Equilibrium, kinetic and adsorption mechanisms. Bioresource Technology, 2012, 125, 138-144.	9.6	150
2	Basic dye adsorption onto an agro-based waste material – Sesame hull (Sesamum indicum L). Bioresource Technology, 2011, 102, 10280-10285.	9.6	121
3	Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere, 2017, 168, 1277-1284.	8.2	120
4	Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: Adsorption process and disposal methodology of depleted bioadsorbents. Bioresource Technology, 2013, 138, 191-197.	9.6	111
5	Application of Hydrochar Altered Soil Microbial Community Composition and the Molecular Structure of Native Soil Organic Carbon in a Paddy Soil. Environmental Science & Technology, 2020, 54, 2715-2725.	10.0	111
6	Carboxylic acid functionalized sesame straw: A sustainable cost-effective bioadsorbent with superior dye adsorption capacity. Bioresource Technology, 2017, 238, 675-683.	9.6	83
7	Nano-cerium oxide functionalized biochar for phosphate retention: preparation, optimization and rice paddy application. Chemosphere, 2017, 185, 816-825.	8.2	78
8	Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chemical Engineering Journal, 2021, 416, 129162.	12.7	67
9	Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. Journal of Cleaner Production, 2019, 240, 118180.	9.3	56
10	Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy and Water Environment, 2016, 14, 105-111.	1.8	55
11	Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environmental Pollution, 2022, 292, 118386.	7.5	53
12	Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism. Bioresource Technology, 2020, 300, 122708.	9.6	52
13	Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. Chemosphere, 2020, 245, 125558.	8.2	51
14	Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere, 2018, 204, 474-482.	8.2	50
15	Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere, 2020, 242, 125247.	8.2	50
16	Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Science of the Total Environment, 2020, 718, 137301.	8.0	47
17	Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Science of the Total Environment, 2020, 743, 140799.	8.0	44
18	Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Science of the Total Environment, 2020, 717, 137127.	8.0	44

Yanfang Feng

#	Article	IF	CITATIONS
19	Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: Process, mechanisms and disposal methodology. Journal of Cleaner Production, 2019, 212, 1423-1433.	9.3	43
20	Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils. Chemosphere, 2019, 237, 124532.	8.2	38
21	Presence of microplastics alone and co-existence with hydrochar unexpectedly mitigate ammonia volatilization from rice paddy soil and affect structure of soil microbiome. Journal of Hazardous Materials, 2022, 422, 126831.	12.4	36
22	How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils?. Environmental Pollution, 2022, 294, 118598.	7.5	36
23	N2O and CH4 emissions from N-fertilized rice paddy soil can be mitigated by wood vinegar application at an appropriate rate. Atmospheric Environment, 2018, 185, 153-158.	4.1	35
24	Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. Science of the Total Environment, 2020, 748, 142457.	8.0	35
25	Hydrochar reduced NH3 volatilization from rice paddy soil: Microbial-aging rather than water-washing is recommended before application. Journal of Cleaner Production, 2020, 268, 122233.	9.3	34
26	Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. Journal of Cleaner Production, 2021, 283, 124627.	9.3	33
27	Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. Journal of Bioresources and Bioproducts, 2022, 7, 116-127.	20.5	31
28	Impact of biochar amendment on soil aggregation varied with incubation duration and biochar pyrolysis temperature. Biochar, 2021, 3, 339-347.	12.6	30
29	Assessment of livestock manure-derived hydrochar as cleaner products: Insights into basic properties, nutrient composition, and heavy metal content. Journal of Cleaner Production, 2022, 330, 129820.	9.3	29
30	Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environmental Pollution, 2021, 287, 117562.	7.5	28
31	Phosphate removal from actual wastewater via La(OH)3-C3N4 adsorption: Performance, mechanisms and applicability. Science of the Total Environment, 2022, 814, 152791.	8.0	28
32	Wood vinegar and biochar co-application mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Environmental Pollution, 2020, 267, 115403.	7.5	26
33	Polyester Microplastic Mitigated NH ₃ Volatilization from a Rice–Wheat Rotation System: Does Particle Size or Natural Aging Effect Matter?. ACS Sustainable Chemistry and Engineering, 2022, 10, 2180-2191.	6.7	25
34	Sawdust biochar application to rice paddy field: reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization. Environmental Science and Pollution Research, 2018, 25, 8388-8395.	5.3	24
35	Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. Chemosphere, 2022, 303, 134944.	8.2	24
36	Responses of rice (Oryza sativa L.) plant growth, grain yield and quality, and soil properties to the microplastic occurrence in paddy soil. Journal of Soils and Sediments, 2022, 22, 2174-2183.	3.0	23

#	Article	IF	CITATIONS
37	Biochar application mode influences nitrogen leaching and NH ₃ volatilization losses in a rice paddy soil irrigated with N-rich wastewater. Environmental Technology (United Kingdom), 2018, 39, 2090-2096.	2.2	22
38	Greenhouse gas emissions vary in response to different biochar amendments: an assessment based on two consecutive rice growth cycles. Environmental Science and Pollution Research, 2019, 26, 749-758.	5.3	21
39	Biowaste hydrothermal carbonization aqueous product application in rice paddy: Focus on rice growth and ammonia volatilization. Chemosphere, 2021, 277, 130233.	8.2	21
40	Responses of periphyton morphology, structure, and function to extreme nutrient loading. Environmental Pollution, 2016, 214, 878-884.	7.5	20
41	Cerium-modified biochar: A recycling biomaterial for regulating phosphorus availability in paddy ecosystem from coastal mudflat reclamation. Geoderma, 2019, 346, 43-51.	5.1	20
42	Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions: A whole growth period investigation. Environmental Pollution, 2021, 274, 116573.	7.5	20
43	Minerals loaded with oxygen nanobubbles mitigate arsenic translocation from paddy soils to rice. Journal of Hazardous Materials, 2020, 398, 122818.	12.4	20
44	Soil structures and immobilization of typical contaminants in soils in response to diverse microplastics. Journal of Hazardous Materials, 2022, 438, 129555.	12.4	20
45	Clay-hydrochar composites mitigated CH4 and N2O emissions from paddy soil: A whole rice growth period investigation. Science of the Total Environment, 2021, 780, 146532.	8.0	19
46	Anaerobic fermentation treatment improved Cd2+ adsorption of different feedstocks based hydrochars. Chemosphere, 2021, 263, 127981.	8.2	18
47	Physicochemical properties of aged hydrochar in a rice-wheat rotation system: A 16-month observation. Environmental Pollution, 2021, 272, 116037.	7.5	18
48	Co-application of biogas slurry and hydrothermal carbonization aqueous phase substitutes urea as the nitrogen fertilizer and mitigates ammonia volatilization from paddy soil. Environmental Pollution, 2021, 287, 117340.	7.5	16
49	Waste-based hydrothermal carbonization aqueous phase substitutes urea for rice paddy return: Improved soil fertility and grain yield. Journal of Cleaner Production, 2022, 344, 131135.	9.3	16
50	Insights into the molecular transformation in the dissolved organic compounds of agro-waste-hydrochars by microbial-aging using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Bioresource Technology, 2021, 320, 124411.	9.6	15
51	Deep fertilization with controlledâ€release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agronomy Journal, 2021, 113, 5027-5039.	1.8	14
52	Clay-hydrochar composites return to cadmium contaminated paddy soil: Reduced Cd accumulation in rice seed and affected soil microbiome. Science of the Total Environment, 2022, 835, 155542.	8.0	14
53	Raw material of water-washed hydrochar was critical for the mitigation of GHGI in infertile paddy soil: a column experiment. Biochar, 2021, 3, 381-390.	12.6	13
54	The inhibiting effects of biochar-derived organic materials on rice production. Journal of Environmental Management, 2021, 293, 112909.	7.8	13

YANFANG FENG

#	Article	IF	CITATIONS
55	Unraveling natural aging-induced properties change of sludge-derived hydrochar and enhanced cadmium sorption site heterogeneity. Biochar, 2022, 4, .	12.6	13
56	Hydrochar and microplastics disturb soil dissolved organic matter and prominently mitigate ammonia volatilization from wheat growing soil. Applied Soil Ecology, 2022, 178, 104552.	4.3	13
57	Efficient Disposal of the Aqueous Products of Wet Organic Waste Hydrothermal Carbonization by Paddy Constructed Wetlands. ACS ES&T Engineering, 2022, 2, 1651-1664.	7.6	11
58	Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation. International Journal of Environmental Research and Public Health, 2019, 16, 2580.	2.6	9
59	Nitrogen fertilizer reduction in combination with Azolla cover for reducing ammonia volatilization and improving nitrogen use efficiency of rice. PeerJ, 2021, 9, e11077.	2.0	9
60	Purification of Dye-stuff Contained Wastewater by a Hybrid Adsorption-Periphyton Reactor (HAPR): Performance and Mechanisms. Scientific Reports, 2017, 7, 9635.	3.3	8
61	High yield and mitigation of N-loss from paddy fields obtained by irrigation using optimized application of sewage tail water. Agriculture, Ecosystems and Environment, 2020, 304, 107137.	5.3	8
62	Composition of a Soil Organic Carbon Increment under Different Vegetable Cultivation Patterns: A Study Using Three SOC Pools. Sustainability, 2019, 11, 35.	3.2	4
63	Water quality and periphyton functional response to input of dissolved manure-derived hydrochars (DHCs). Journal of Environmental Management, 2022, 318, 115541.	7.8	4