J Paul Devlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990325/publications.pdf

Version: 2024-02-01

159358 123241 82 3,838 30 61 citations h-index g-index papers 82 82 82 2377 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	H-bonding behavior of ethylene oxide within the clathrate hydrates revisited: Experiment and theory. Chemical Physics Letters, 2020, 754, 137728.	1.2	1
2	Can sulfur-containing molecules solvate/ionize HCl? Solid state solvation of HCl on/in methanethiol clusters/nanoparticles. Journal of Chemical Physics, 2019, 151, 194309.	1.2	O
3	NH3 as simple clathrate-hydrate catalyst: Experiment and theory. Journal of Chemical Physics, 2018, 148, 234501.	1.2	9
4	NH3 as unique non-classical content-former within clathrate hydrates. Journal of Chemical Physics, 2017, 146, 234508.	1,2	12
5	Molecular Modes and Dynamics of HCl and DCl Guests of Gas Clathrate Hydrates. Journal of Physical Chemistry A, 2015, 119, 9018-9026.	1.1	9
6	CO2 and C2H2 in cold nanodroplets of oxygenated organic molecules and water. Journal of Chemical Physics, 2014, 141, 18C506.	1,2	4
7	Catalytic activity of methanol in all-vapor subsecond clathrate-hydrate formation. Journal of Chemical Physics, 2014, 140, 164505.	1.2	21
8	Communication: Fourier-transform infrared probing of remarkable quantities of gas trapped in cold homogeneously nucleated nanodroplets. Journal of Chemical Physics, 2013, 139, 021107.	1.2	7
9	Tracking all-vapor instant gas-hydrate formation and guest molecule populations: A possible probe for molecules trapped in water nanodroplets. Journal of Chemical Physics, 2012, 137, 204501.	1.2	10
10	Comment on "HCl adsorption on ice at low temperature: a combined X-ray absorption, photoemission and infrared study―by P. Parent, J. Lasne, G. Marcotte and C. Laffon, Phys. Chem. Chem. Phys., 2011, ⟨b⟩13⟨/b⟩, 7142. Physical Chemistry Chemical Physics, 2012, 14, 1048-1049.	1.3	13
11	Relating the current science of ion-defect behavior in ice to a plausible mechanism for directional charge transfer during ice particle collisions. Physical Chemistry Chemical Physics, 2011, 13, 19707.	1.3	11
12	Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols. Journal of Chemical Physics, 2011, 135, 141103.	1.2	10
13	Controlling Nonclassical Content of Clathrate Hydrates Through the Choice of Molecular Guests and Temperature. Journal of Physical Chemistry A, 2011, 115, 5822-5832.	1.1	24
14	Clathrateâ€"hydrate ultrafast nucleation and crystallization from supercooled aqueous nanodroplets. Chemical Physics Letters, 2010, 492, 1-8.	1.2	27
15	Classical to Nonclassical Transition of Etherâ ^{**} HCN Clathrate Hydrates at Low Temperature. Journal of Physical Chemistry Letters, 2010, 1, 290-294.	2.1	40
16	Instant Conversion of Air to a Clathrate Hydrate: CO ₂ Hydrates Directly from Moist Air and Moist CO ₂ (g). Journal of Physical Chemistry A, 2010, 114, 13129-13133.	1.1	20
17	Clathrate hydrates with hydrogen-bonding guests. Physical Chemistry Chemical Physics, 2009, 11, 10245.	1.3	149
18	Response to Comment on Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? by J. K. Beattie, Phys. Chem. Chem. Phys., 2007,9, DOI: 10.1039/b713702h. Physical Chemistry Chemical Physics, 2008, 10, 332-333.	1.3	37

#	Article	IF	CITATIONS
19	Evidence for the surface origin of point defects in ice: Control of interior proton activity by adsorbates. Journal of Chemical Physics, 2007, 127, 091101.	1.2	33
20	Water surface is acidic. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7342-7347.	3.3	332
21	Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic?. Physical Chemistry Chemical Physics, 2007, 9, 4736.	1.3	151
22	Rates and Mechanisms of Conversion of Ice Nanocrystals to Ether Clathrate Hydrates:  Guest-Molecule Catalytic Effects at â^¼120 K. Journal of Physical Chemistry A, 2006, 110, 1901-1906.	1.1	30
23	HCl Solvation at the Surface and within Methanol Clusters/Nanoparticles II:Â Evidence for Molecular Wires. Journal of Physical Chemistry B, 2006, 110, 21751-21763.	1.2	21
24	Rates and Mechanisms of Conversion of Ice Nanocrystals to Hydrates of HCl and HBr:Â Acid Diffusion in the Ionic Hydrates. Journal of Physical Chemistry B, 2005, 109, 3392-3401.	1.2	23
25	Solid water clusters in the size range of tens–thousands of H2O: a combined computational/spectroscopic outlook. International Reviews in Physical Chemistry, 2004, 23, 375-433.	0.9	210
26	Solvation Stages of HCl and HBr in Crystalline Phases with Methanol and Small Ethers:Â Acidâ^Ether Cluster Complexes in Amorphous and Crystal Phases. Journal of Physical Chemistry A, 2004, 108, 2030-2043.	1.1	20
27	Ice Nanoparticles and Ice Adsorbate Interactions: FTIR Spectroscopy and Computer Simulations. Springer Series in Cluster Physics, 2003, , 425-462.	0.3	14
28	Solvation and Ionization Stages of HCl on Ice Nanocrystals. Journal of Physical Chemistry A, 2002, 106, 9374-9389.	1.1	127
29	Infrared Spectra of Large H2O Clusters:  New Understanding of the Elusive Bending Mode of Ice. Journal of Physical Chemistry A, 2001, 105, 974-983.	1.1	146
30	Protonic and Bjerrum defect activity near the surface of ice at T<145 K. Journal of Chemical Physics, 2001, 115, 9835-9842.	1.2	39
31	Preferential deuterium bonding at the ice surface: A probe of surface water molecule mobility. Journal of Chemical Physics, 2000, 112, 5527-5529.	1.2	26
32	Hydrogen Bond Surface Chemistry:Â Interaction of NH3with an Ice Particle. Journal of Physical Chemistry B, 2000, 104, 9203-9209.	1.2	44
33	Rate Study of Ice Particle Conversion to Ammonia Hemihydrate:  Hydrate Crust Nucleation and NH3 Diffusion. Journal of Physical Chemistry A, 2000, 104, 5770-5777.	1.1	39
34	Covalent and Ionic States of Strong Acids at the Ice Surface. Israel Journal of Chemistry, 1999, 39, 261-272.	1.0	24
35	Coated Ice Nanocrystals from Waterâ^'Adsorbate Vapor Mixtures:  Formation of Etherâ^'CO2 Clathrate Hydrate Nanocrystals at 120 K. Journal of Physical Chemistry B, 1998, 102, 4526-4535.	1.2	29
36	Molecular bending mode frequencies of the surface and interior of crystalline ice. Journal of Chemical Physics, 1998, 108, 4525-4529.	1.2	35

#	Article	IF	CITATIONS
37	Ice Surface Reactions with Acids and Bases. Journal of Physical Chemistry B, 1997, 101, 2327-2332.	1.2	70
38	Theoretical study of $[Li(H2O)n]+and [K(H2O)n]+(n=1a^4) complexes$. International Journal of Quantum Chemistry, 1995, 53, 49-56.	1.0	9
39	Defect Activity in Amorphous Ice From Isotopic Exchange Data: Insight into the Glass Transition. The Journal of Physical Chemistry, 1995, 99, 11584-11590.	2.9	141
40	Surface of ice as viewed from combined spectroscopic and computer modeling studies. The Journal of Physical Chemistry, 1995, 99, 16534-16548.	2.9	172
41	Infrared spectra of hydrogen chloride complexed/ionized in amorphous hydrates and at ice surfaces in the 15-90 K range. The Journal of Physical Chemistry, 1993, 97, 10312-10318.	2.9	134
42	Probing icy surfaces with the danglingâ€OHâ€mode absorption: Large ice clusters and microporous amorphous ice. Journal of Chemical Physics, 1991, 95, 1378-1384.	1.2	167
43	Carbon dioxide clathrate hydrate epitaxial growth: spectroscopic evidence for formation of the simple type-II carbon dioxide hydrate. The Journal of Physical Chemistry, 1991, 95, 3811-3815.	2.9	144
44	Spectra of dangling OH groups at ice cluster surfaces and within pores of amorphous ice. Journal of Chemical Physics, 1991, 94, 812-813.	1.2	138
45	Infrared spectra of large clusters containing small ether molecules: Liquid, crystalline, and clathrateâ€hydrate cluster spectra. Journal of Chemical Physics, 1990, 92, 36-42.	1.2	20
46	Vibrational spectra and point defect activities of icy solids and gas phase clusters. International Reviews in Physical Chemistry, 1990, 9, 29-65.	0.9	78
47	Infrared spectra of gasâ€phase water microparticles: Crystalline, amorphous, and clathrate–hydrate clusters of H2O, D2O, and H2O/D2O. Journal of Chemical Physics, 1989, 91, 5850-5851.	1.2	10
48	Polarized Raman spectra for the full range of isotopic dilution for ice Ic and amorphous ice: Mixtures of intact H2O and D2O. Journal of Chemical Physics, 1989, 90, 1322-1329.	1.2	29
49	An alternate interpretation of the conductivity of HClâ€doped ice. Journal of Chemical Physics, 1988, 89, 5967-5968.	1.2	8
50	Proton trapping and defect energetics in ice from FTâ€IR monitoring of photoinduced isotopic exchange of isolated D2O. Journal of Chemical Physics, 1988, 88, 3086-3091.	1.2	95
51	FT-IR spectra of 90 K films of simple, mixed, and double clathrate hydrates of trimethylene oxide, methyl chloride, carbon dioxide, tetrahydrofuran, and ethylene oxide containing decoupled water-d2. The Journal of Physical Chemistry, 1988, 92, 631-635.	2.9	71
52	Mobile Bjerrum defects: A criterion for iceâ€like crystal growth. Journal of Chemical Physics, 1987, 87, 4126-4131.	1.2	47
53	Dependence of ion pairing and solvation on solution temperature: Evidence from DMSO solution and matrixâ€solvation spectra. Journal of Chemical Physics, 1987, 86, 4391-4395.	1.2	14
54	Decoupled isotopomer vibrational frequencies in cubic ice: A simple unified view of the Fermi diads of decoupled H2O, HOD, and D2O. Journal of Chemical Physics, 1986, 84, 6095-6100.	1.2	32

#	Article	IF	Citations
55	A test of the intrinsic nature of the shallow proton traps in ice. Journal of Chemical Physics, 1986, 84, 4111-4112.	1.2	3
56	Determination of proton-transfer rates and energetics for the clathrate hydrate of oxirane by FT-IR spectroscopy. The Journal of Physical Chemistry, 1985, 89, 3552-3555.	2.9	19
57	FTâ€IR spectra of vacuum deposited clathrate hydrates of oxirane H2S, THF, and ethane. Journal of Chemical Physics, 1985, 83, 4387-4394.	1.2	71
58	Solvation studies in argon matrices: Details of the stepwise formation of Sna‹Li+NO3∠ion pair solvates where S is H2O, THF, DMF, and glyme. Journal of Chemical Physics, 1985, 82, 1167-1173.	1,2	3
59	FTâ€IR investigation of proton transfer in irradiated ice at 90 K in the absence of mobile bjerrum defects. Journal of Chemical Physics, 1984, 81, 3250-3255.	1.2	19
60	Spectroscopically evaluated rates and energies for proton transfer and Bjerrum defect migration in cubic ice. The Journal of Physical Chemistry, 1984, 88, 363-368.	2.9	89
61	Discussion of "Vibrational Spectroscopic Determination of Structure and Ion Pairing in Complexes of Poly(ethylene oxide) with Lithium Salts―[B. L. Papke, M. A. Ratner, and D. F. Shriver (pp. 1434–1438, Vol.) Tj	ETQa11	0.7 8 4314 rgE
62	Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate. Journal of Chemical Physics, 1981, 75, 5609-5614.	1,2	10
63	Direct spectroscopic observation of proton exchange and Bjerrum defect migration in cubic ice. Journal of Chemical Physics, 1980, 72, 6807-6808.	1.2	14
64	The vibrational and electronic spectra of the monoâ€, diâ€, and trianon salts of TCNQ. Journal of Chemical Physics, 1979, 70, 1851-1859.	1.2	141
65	Ion pair and partially hydrated Li+NO3â^ ion pair structures: Correlation of molecular orbital results with matrix isolation data. Journal of Chemical Physics, 1978, 68, 826-831.	1.2	19
66	Observation of a nonlinear photoacoustic signal with potential application to nanosecond time resolution. Applied Physics Letters, 1977, 31, 24-25.	1.5	12
67	Infrared spectrum of D2O vibrationally decoupled in glassy H2O. Journal of Chemical Physics, 1977, 67, 4779-4780.	1.2	18
68	Infrared spectra of matrix isolated alkali metal perchlorate ion pairs. Journal of Chemical Physics, 1975, 62, 1982-1986.	1,2	26
69	Vibrational spectra of matrix isolated alkali metal chlorate ion pairs. Journal of Chemical Physics, 1974, 60, 2540-2546.	1.2	16
70	MCIO3 ion pairs in glassy H2O and NH3. Journal of Chemical Physics, 1974, 61, 1596-1597.	1.2	2
71	Glassy water Raman spectrum from a trapped laser beam. Journal of Chemical Physics, 1973, 59, 547-548.	1.2	26
72	Vibronic interactions, resonance Raman spectra and bond strengths for the radical anion salts of tetracyanoethylene. Journal of Chemical Physics, 1973, 58, 4750-4756.	1.2	68

#	Article	IF	CITATIONS
73	Cooperative effects in the spectra of the internal modes of molten salts. Journal of Chemical Physics, 1973, 58, 817-818.	1.2	11
74	Polarized Raman Spectra of Cesium Nitrate in Solid and Molten States: The Nature of the Disordered Phases. Journal of Chemical Physics, 1972, 56, 4688-4694.	1.2	8
75	ATR Spectra of Crystalline LiNO3 and NaNO3. Journal of Chemical Physics, 1970, 52, 5495-5496.	1.2	3
76	Vibrational Spectra and Structures of Ionic Liquids. IV. Isotopic Dilution of the Alkali Metal and Ammonium Nitrates. Journal of Chemical Physics, 1970, 52, 2267-2273.	1.2	20
77	Spectroscopic Observation of Surface Distortion in Ionic Crystals. I. Lithium and Sodium Nitrate. Journal of Chemical Physics, 1969, 51, 302-308.	1.2	5
78	Vibrational Spectra and Structures of Ionic Liquids. II. The Pure Alkali Metal Nitrates. Journal of Chemical Physics, 1968, 48, 3891-3896.	1.2	52
79	Vibrational Spectra and Structures of Ionic Liquids. III. KNO3–AgNO3 Mixtures. Journal of Chemical Physics, 1968, 49, 1441-1442.	1.2	11
80	Infrared Spectrum of Molten Silver Nitrate. Journal of Chemical Physics, 1966, 44, 2203-2204.	1.2	29
81	Infrared Techniques for Fused Salts. Review of Scientific Instruments, 1964, 35, 1206-1207.	0.6	13
82	Ureyâ€Bradley ``Nonbonded'' Forces. Journal of Chemical Physics, 1963, 39, 2385-2385.	1.2	4