Josemon Jacob

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990291/publications.pdf

Version: 2024-02-01

201674 233421 2,307 91 27 45 h-index citations g-index papers 94 94 94 2608 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2,2â $€$ ²â $€$ Bipyridine containing chelating polymers for sequestration of heavy metal ions from organic solvents. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
2	Moisture barrier layer with supplemental chemical and biological protective functionality for firefighting clothing applications. Journal of Industrial Textiles, 2022, 51, 6110S-6133S.	2.4	4
3	Biodegradable and pH-responsive piperazine-based aliphatic polyesters with tunable hydrophilicity. European Polymer Journal, 2022, 162, 110919.	5.4	6
4	Thermally stable poly(urethaneâ€imide)s with enhanced hydrophilicity for waterproofâ€breathable textile coatings. Journal of Applied Polymer Science, 2022, 139, .	2.6	6
5	Regenerative macroporous polyzwitterionic gels for brackish/sea water desalination. Desalination, 2022, 535, 115801.	8.2	6
6	Pentaerythritol derived phosphorous based bicyclic compounds as promising flame retardants for thermoplastic polyurethane films. Journal of Applied Polymer Science, 2021, 138, 50375.	2.6	4
7	Macroporous Polyzwitterionic Gels As Versatile Intermediates for the Fixation and Release of Anions. Langmuir, 2021, 37, 5424-5435.	3.5	5
8	Synthesis, Optimal Fabrication, and Physicoâ€Mechanical Property Evaluation of PCL <i>â€bâ€</i> PLLA Diblock Copolymerâ€Based Nanoscale Roughness Textured Electrospun Mats. Macromolecular Materials and Engineering, 2021, 306, 2100226.	3.6	11
9	Tunable macroporous D-galactose based hydrogels for controlled release of a hydrophilic drug. European Polymer Journal, 2021, 150, 110409.	5.4	18
10	Highly porous, waterâ€swellable, and reusable chelating polymeric gels for heavy metal ion removal from aqueous waste. Journal of Applied Polymer Science, 2021, 138, 51353.	2.6	6
11	Design, Synthesis and Selective Functionalization of a Rigid, Truxene Derived Pure Blueâ€Emitting Chromophore. ChemistrySelect, 2020, 5, 109-116.	1.5	3
12	Perylene diimide based low band gap copolymers: synthesis, characterization and their applications in perovskite solar cells. Journal of Polymer Research, 2020, 27, 1.	2.4	3
13	D-galactose-based organogelator for phase-selective solvent removal and sequestration of cationic dyes. Reactive and Functional Polymers, 2020, 157, 104766.	4.1	9
14	Design and synthesis of water-soluble chelating polymeric materials for heavy metal ion sequestration from aqueous waste. Reactive and Functional Polymers, 2020, 154, 104687.	4.1	8
15	One-step fabrication of bicompartmental microparticles as a dual drug delivery system for Parkinson's disease management. Journal of Materials Science, 2019, 54, 730-744.	3.7	28
16	Biofriendly and green biocomposites based on poly ($\hat{l}\mu$ -caprolactone): Post-yield fracture, crystallization, rheological and micromechanical behaviors. AIP Conference Proceedings, 2019, , .	0.4	0
17	Enhancing the electroluminescence efficiency by controlling the migration of excited states to quenching sites in a truxene-based oligomer. Journal of Applied Physics, 2019, 126, .	2.5	3
18	Design and synthesis of highly twisted phenanthroimidazole substituted blue-emitting truxene based fluorescent chromophores. New Journal of Chemistry, 2019, 43, 2278-2288.	2.8	8

#	Article	IF	Citations
19	Bicompartmental microparticles loaded with antibacterial agents for prolonging food shelf life. Journal of Materials Science, 2019, 54, 9729-9744.	3.7	17
20	Influence of aliphatic polycarbonate middle block on mechanical and microstructural behaviour of triblock copolymers based on poly(<scp>l</scp> â€lactide) and polycarbonate. Polymer International, 2019, 68, 400-409.	3.1	5
21	Poly(lactic acid)/(styreneâ€ethyleneâ€butyleneâ€styrene)â€gâ€maleic anhydride copolymer/sepiolite nanocomposites: <scp>I</scp> nvestigation of thermoâ€mechanical and morphological properties. Polymers for Advanced Technologies, 2018, 29, 234-243.	3.2	16
22	Effect of Thermoplastic Elastomer on Melt Rheological and Fracture Behavior of Poly(Lactic Acid). Polymer-Plastics Technology and Engineering, 2018, 57, 1254-1264.	1.9	9
23	Solution processable truxene based blue emitters: Synthesis, characterization and electroluminescence studies. Journal of Luminescence, 2018, 196, 511-519.	3.1	7
24	Post-yield fracture correlations to morphological and micromechanical response of poly(μ -caprolactone)-based biocomposites. Journal of Thermoplastic Composite Materials, 2018, 31, 575-597.	4.2	3
25	Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 2018, 135, 45644.	2.6	29
26	Design and synthesis of N-substituted perylene diimide based low band gap polymers for organic solar cell applications. RSC Advances, 2018, 8, 30468-30480.	3.6	11
27	Direct arylation polymerization approach for the synthesis of narrow band gap cyclopentadithiophene based conjugated polymer and its application in solar cell devices. Synthetic Metals, 2017, 226, 56-61.	3.9	7
28	Nonisothermal crystallization and microstructural behavior of poly($\hat{l}\mu$ -caprolactone) and granular tapioca starch-based biocomposites. International Journal of Polymer Analysis and Characterization, 2017, 22, 222-236.	1.9	12
29	Analytical interpretation of mechanical response of green biocomposites based on poly(ε-caprolactone) and granular tapioca starch. Polymer Bulletin, 2017, 74, 1693-1711.	3.3	4
30	Effect of poly(l-lactide) chain length on microstructural and thermo-mechanical properties of poly(l-lactide)-b-poly(butylene carbonate)-b-poly(l-lactide) triblock copolymers. Polymer, 2017, 123, 87-99.	3.8	14
31	Synthesis and photovoltaic device studies of azoâ€linked lowâ€bandgap polymers. Polymer International, 2017, 66, 593-603.	3.1	10
32	Synthesis and photovoltaic studies on novel fluorene based cross-conjugated donor-acceptor type polymers. Organic Electronics, 2017, 40, 42-50.	2.6	16
33	A comparative study of poly(<scp>l</scp> â€lactide)â€ <i>block</i> â€poly(<i>ϵ</i> â€caprolactone) sixâ€armed s diblock copolymers and polylactide/poly(<i>ϵ</i> â€caprolactone) blends. Polymer International, 2016, 65, 1107-1117.	star 3.1	17
34	Tuning the HOMO energy levels in quinoline and biquinoline based donor-acceptor polymers. Journal of Polymer Research, $2016, 23, 1$.	2.4	9
35	Synthesis and characterization of lightâ€absorbing cyclopentadithiopheneâ€based donor–acceptor copolymers. Polymer International, 2016, 65, 57-65.	3.1	21
36	Single Molecule Studies of a Ladder Type Conjugated Polymer: Vibronic Spectra, Line Widths, and Energy Transfer. Macromolecular Rapid Communications, 2015, 36, 1096-1102.	3.9	6

#	Article	IF	CITATIONS
37	Synthesis, characterization and biodegradation studies of chain-coupled polyesters based on tartaric acid. Polymer International, 2014, 63, 680-688.	3.1	11
38	On the role of aggregation effects in the performance of perylene-diimide based solar cells. Organic Electronics, 2014, 15, 1347-1361.	2.6	60
39	Facile synthesis and coupling of 3,9-dibromo-6-aryl-5H-dibenzo[d,f][1,3]diazepine derivatives. Tetrahedron Letters, 2013, 54, 5883-5885.	1.4	10
40	Improving the layer morphology of solution-processed perylene diimide organic solar cells with the use of a polymeric interlayer. Organic Photonics and Photovoltaics, 2013, 1 , .	1.3	7
41	Polyaniline doped with î±, ï‰â€alkanedisulfonic acids: preparation and characterization. Polymer International, 2013, 62, 797-803.	3.1	10
42	Interplay of α,α―versus α,βâ€Conjugation in the Excited States and Charged Defects of Branched Oligothiophenes as Models for Dendrimeric Materials. Chemistry - A European Journal, 2013, 19, 17165-17171.	3.3	8
43	Influence of block composition on structural, thermal and mechanical properties of novel aliphatic polyester based triblock copolymers. Polymer, 2012, 53, 4662-4671.	3.8	11
44	Facile synthesis of 5,8â€linked quinolineâ€based copolymers. Polymer International, 2012, 61, 1318-1325.	3.1	14
45	Swapping field-effect transistor characteristics in polymeric diketopyrrolopyrrole semiconductors: debut of an electron dominant transporting polymer. Journal of Materials Chemistry, 2012, 22, 1504-1510.	6.7	40
46	Facile synthesis and coupling of functionalized isomeric biquinolines. Tetrahedron Letters, 2012, 53, 285-288.	1.4	7
47	Synthesis and characterization of copolyesters based on tartaric acid derivatives. Polymer Bulletin, 2012, 68, 1287-1304.	3.3	28
48	Electron-Exchange-Assisted Photon Energy Up-Conversion in Thin Films of π-Conjugated Polymeric Composites. Journal of Physical Chemistry Letters, 2011, 2, 1893-1899.	4.6	24
49	Synthesis and characterization of donor–acceptor type 4,4′-bis(2,1,3-benzothiadiazole)-based copolymers. Polymer, 2011, 52, 4442-4450.	3.8	23
50	Synthesis, characterization, and OFET characteristics of 3,4-diaryl substituted poly(thienylene) Tj ETQq0 0 0 rgE	3T /Qverloc	k 10 Tf 50 22.
51	Synthesis and characterization of 3,4â€diarylâ€substituted polythiophene derivatives. Polymer International, 2011, 60, 1010-1015.	3.1	8
52	Copolymers Comprising 2,7â€Carbazole and Bisâ€benzothiadiazole Units for Bulkâ€Heterojunction Solar Cells. Chemistry - A European Journal, 2011, 17, 14681-14688.	3.3	27
53	Blue-emitting copolymers of isoquinoline and fluorene. Reactive and Functional Polymers, 2011, 71, 849-856.	4.1	12
54	Synthesis of PPP-b-PS block copolymers using a combination of Suzuki-polycondensation and nitroxide-mediated radical polymerization. Polymer, 2010, 51, 5294-5303.	3.8	16

#	Article	IF	CITATIONS
55	Synthesis and characterization of polyesters based on tartaric acid derivatives. Polymer, 2010, 51, 5392-5399.	3.8	48
56	Synthesis and optical studies of conjugated polyfluorenyl cations. Polymer, 2010, 51, 5705-5711.	3.8	6
57	Tetrathiophenes with thiophene side chains: effect of substitution on packing and conjugation. Tetrahedron Letters, 2010, 51, 2956-2958.	1.4	11
58	Synthesis and Characterization of Hexathiophenes with Methylthienyl Side Chains. Macromolecular Symposia, 2010, 298, 154-159.	0.7	2
59	Superexchange-mediated electronic energy transfer in a model dyad. Physical Chemistry Chemical Physics, 2010, 12, 7378.	2.8	32
60	Synthesis and characterization of pyrene-centered oligothiophenes. Synthetic Metals, 2010, 160, 1987-1993.	3.9	16
61	A Simple Route toward the Synthesis of Bisbenzothiadiazole Derivatives. Organic Letters, 2008, 10, 5533-5536.	4.6	38
62	8-Quinolinolates as Ligands for Luminescent Cyclometalated Iridium Complexes. Chemistry of Materials, 2007, 19, 1209-1211.	6.7	58
63	CTâ^'CT Annihilation in Rigid Perylene End-Capped Pentaphenylenes. Journal of the American Chemical Society, 2007, 129, 610-619.	13.7	36
64	Photophysical Properties of a Series of Poly(ladderâ€type phenylene)s. Advanced Functional Materials, 2007, 17, 3231-3240.	14.9	32
65	Singlet–Singlet Annihilation Leading to a Charge-Transfer Intermediate in Chromophore-End-Capped Pentaphenylenes. ChemPhysChem, 2007, 8, 1386-1393.	2.1	8
66	Synthesis of aminocarbazole–anthraquinone fused dyes and polymers. Dyes and Pigments, 2007, 75, 1-10.	3.7	31
67	Synthesis and Photochromic Properties of Ladderized Poly(p-phenylene-alt-9,10-anthrylene)s. Macromolecules, 2006, 39, 5696-5704.	4.8	46
68	Poly(2,7-phenanthrylene)s and Poly(3,6-phenanthrylene)s as Polyphenylene and Poly(phenylenevinylene) Analogues. Macromolecules, 2006, 39, 5213-5221.	4.8	55
69	Blue-Emitting Carbon- and Nitrogen-Bridged Poly(ladder-type tetraphenylene)s. Chemistry of Materials, 2006, 18, 2879-2885.	6.7	72
70	A hybrid polymer of polyaniline and phthalimide dyes. Synthetic Metals, 2006, 156, 433-443.	3.9	18
71	Twin Probes as a Novel Tool for the Detection of Single-Nucleotide Polymorphisms. Chemistry - A European Journal, 2006, 12, 3707-3713.	3.3	32
72	A Conjugated Polycarbazole Ring around a Porphyrin. Angewandte Chemie - International Edition, 2006, 45, 4685-4690.	13.8	83

#	Article	IF	CITATIONS
73	Polyphenylenes and Poly(phenyleneethynylene)s with 9,10-Anthrylene Subunits. Macromolecular Chemistry and Physics, 2006, 207, 1107-1115.	2.2	18
74	Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states. Chemical Physics Letters, 2005, 401, 503-508.	2.6	33
75	Photophysical Characterization of Light-Emitting Poly(indenofluorene)s. ChemPhysChem, 2005, 6, 1650-1660.	2.1	38
76	Enhanced Operational Stability of the Up-Conversion Fluorescence in Films of Palladium-Porphyrin End-Capped Poly(pentaphenylene). ChemPhysChem, 2005, 6, 1250-1253.	2.1	56
77	Counting Chromophores in Conjugated Polymers. Angewandte Chemie - International Edition, 2005, 44, 1520-1525.	13.8	108
78	Counting Chromophores in Conjugated Polymers. Angewandte Chemie, 2005, 117, 1544-1549.	2.0	25
79	Charge transfer enhanced annihilation leading to deterministic single photon emission in rigid perylene end-capped polyphenylenes. Chemical Communications, 2005, , 4973.	4.1	17
80	A Fully Aryl-Substituted Poly(ladder-type pentaphenylene):  A Remarkably Stable Blue-Light-Emitting Polymer. Macromolecules, 2005, 38, 9933-9938.	4.8	92
81	Low-threshold amplified spontaneous emission in thin films of poly(tetraarylindenofluorene). Applied Physics Letters, 2005, 87, 261917.	3.3	18
82	Progress towards stable blue light-emitting polymers. Current Applied Physics, 2004, 4, 339-342.	2.4	38
83	Ladder-Type Pentaphenylenes and Their Polymers:  Efficient Blue-Light Emitters and Electron-Accepting Materials via a Common Intermediate. Journal of the American Chemical Society, 2004, 126, 6987-6995.	13.7	228
84	Selective Conversion of Diallylanilines and Arylimines to Quinolines ChemInform, 2003, 34, no.	0.0	0
85	Poly(tetraarylindenofluorene)s:Â New Stable Blue-Emitting Polymers. Macromolecules, 2003, 36, 8240-8245.	4.8	162
86	Selective Conversion of Diallylanilines and Arylimines to Quinolines. Journal of Organic Chemistry, 2003, 68, 3563-3568.	3.2	45
87	Cobalt-catalyzed selective conversion of diallylanilines and arylimines to quinolines. Journal of Molecular Catalysis A, 2002, 182-183, 565-570.	4.8	16
88	Nickel-Mediated Selective Carbonylation Routes to Thiocarbamates. Organometallics, 2001, 20, 1028-1031.	2.3	25
89	Synthesis, Structure, and Reactivity of Novel Dithiolato(oxo)rhenium(V) Complexes. Inorganic Chemistry, 1999, 38, 1040-1041.	4.0	31
90	1,3-Transposition of Allylic Alcohols Catalyzed by Methyltrioxorhenium. Organometallics, 1998, 17, 1835-1840.	2.3	71

#	Article	IF	CITATIONS
91	Dendritic core derived unimolecular micelles with poly(lactic acid) arms: Synthesis and application as a phase transfer agent. Polymers for Advanced Technologies, 0, , .	3.2	1