
Christian Faul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990173/publications.pdf Version: 2024-02-01

CHDISTIAN FAIL

#	Article	IF	CITATIONS
1	The bone at the intersection of kidney and heart disease. Trends in Pharmacological Sciences, 2022, 43, 84-86.	4.0	1
2	Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. ELife, 2022, 11, .	2.8	18
3	A Klotho-Derived Peptide as a Possible Novel Drug to Prevent Kidney Fibrosis. American Journal of Kidney Diseases, 2022, 80, 285-288.	2.1	5
4	FGF21-FGFR4 signaling in cardiac myocytes promotes concentric cardiac hypertrophy in mouse models of diabetes. Scientific Reports, 2022, 12, 7326.	1.6	8
5	Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney International, 2022, 102, 261-279.	2.6	16
6	Gluten-Free Diet in Childhood Difficult-to-Treat Nephrotic Syndrome: A Pilot Feasibility Study. Glomerular Diseases, 2022, 2, 176-183.	0.2	2
7	Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Chronic Kidney Disease. FASEB Journal, 2021, 35, .	0.2	0
8	DACH1 as a multifaceted and potentially druggable susceptibility factor for kidney disease. Journal of Clinical Investigation, 2021, 131, .	3.9	1
9	FGF23, a novel muscle biomarker detected in the early stages of ALS. Scientific Reports, 2021, 11, 12062.	1.6	7
10	Fibroblast growth factor 23 (FGF23) induces ventricular arrhythmias and prolongs QTc interval in mice in an FGF receptor 4-dependent manner. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2283-H2294.	1.5	13
11	Fibroblast Growth Factor Receptor 4 Deficiency Mediates Airway Inflammation in the Adult Healthy Lung?. Frontiers in Medicine, 2020, 7, 317.	1.2	6
12	Elevated Phosphate Levels Induce Markers of Systemic Inflammation and Anemia in Murine Hepatocytes. FASEB Journal, 2020, 34, 1-1.	0.2	1
13	The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. International Journal of Molecular Sciences, 2019, 20, 4195.	1.8	65
14	FGF23 and inflammation—a vicious coalition in CKD. Kidney International, 2019, 96, 813-815.	2.6	27
15	FGFR4 does not contribute to progression of chronic kidney disease. Scientific Reports, 2019, 9, 14023.	1.6	10
16	Plasma Zonulin Levels in Childhood Nephrotic Syndrome. Frontiers in Pediatrics, 2019, 7, 197.	0.9	12
17	Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L141-L154.	1.3	37
18	DNA-Encoded Library-Derived DDR1 Inhibitor Prevents Fibrosis and Renal Function Loss in a Genetic Mouse Model of Alport Syndrome. ACS Chemical Biology, 2019, 14, 37-49.	1.6	84

#	Article	IF	CITATIONS
19	Cardioprotective Effects of Paricalcitol Alone and in Combination With FGF23 Receptor Inhibition in Chronic Renal Failure: Experimental and Clinical Studies. American Journal of Hypertension, 2019, 32, 34-44.	1.0	24
20	The Effects of the Anti-aging Protein Klotho on Mucociliary Clearance. Frontiers in Medicine, 2019, 6, 339.	1.2	8
21	Hyperphosphatemia Contributes to Inflammation and Iron Dysregulation in Models of Normal and Impaired Renal Function. Blood, 2019, 134, 2238-2238.	0.6	4
22	FGF23 effects on the heart—levels, time, source, andÂcontext matter. Kidney International, 2018, 94, 7-11.	2.6	22
23	FGF23 Actions on Target Tissues—With and Without Klotho. Frontiers in Endocrinology, 2018, 9, 189.	1.5	142
24	Fibroblast growth factor 23 and Klotho contribute to airway inflammation. European Respiratory Journal, 2018, 52, 1800236.	3.1	78
25	STAT3-enhancing germline mutations contribute to tumor-extrinsic immune evasion. Journal of Clinical Investigation, 2018, 128, 1867-1872.	3.9	30
26	FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Scientific Reports, 2017, 7, 1993.	1.6	97
27	Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrology Dialysis Transplantation, 2017, 32, 1493-1503.	0.4	74
28	Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors forÂdeath in chronic kidney disease. Kidney International, 2017, 91, 711-719.	2.6	91
29	Klotho Inhibits Interleukin-8 Secretion from Cystic Fibrosis Airway Epithelia. Scientific Reports, 2017, 7, 14388.	1.6	36
30	Fibroblast Growth Factor 23: Mineral Metabolism and Beyond. Contributions To Nephrology, 2017, 190, 83-95.	1.1	30
31	Induction of an Inflammatory Response in Primary Hepatocyte Cultures from Mice. Journal of Visualized Experiments, 2017, , .	0.2	5
32	Cardiac actions of fibroblast growth factor 23. Bone, 2017, 100, 69-79.	1.4	50
33	Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney International, 2016, 90, 985-996.	2.6	284
34	The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy. Current Opinion in Nephrology and Hypertension, 2016, 25, 314-324.	1.0	47
35	The Effect of a Gluten-Free Diet in Children With Difficult-to-Manage Nephrotic Syndrome. Pediatrics, 2016, 138, .	1.0	17
36	Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 2016, 31, 1088-1099.	0.4	168

#	Article	IF	CITATIONS
37	Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. Journal of Clinical Investigation, 2016, 126, 3336-3350.	3.9	123
38	In vivo imaging of kidney glomeruli transplanted into the anterior chamber of the mouse eye. Scientific Reports, 2015, 4, 3872.	1.6	19
39	Sphingomyelinase-Like Phosphodiesterase 3b Expression Levels Determine Podocyte Injury Phenotypes in Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 133-147.	3.0	119
40	Hunt for the culprit of cardiovascular injury in kidney disease: FigureÂ1. Cardiovascular Research, 2015, 108, 209-211.	1.8	11
41	Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 2015, 22, 1020-1032.	7.2	432
42	Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. Journal of the American Society of Nephrology: JASN, 2015, 26, 1290-1302.	3.0	231
43	Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD. Nephrology Dialysis Transplantation, 2014, 29, 2028-2035.	0.4	86
44	Paricalcitol Downregulates Myocardial Renin-Angiotensin and Fibroblast Growth Factor Expression and Attenuates Cardiac Hypertrophy in Uremic Rats. American Journal of Hypertension, 2014, 27, 720-726.	1.0	42
45	Signal transduction in podocytes—spotlight on receptor tyrosine kinases. Nature Reviews Nephrology, 2014, 10, 104-115.	4.1	24
46	Essential Role for Synaptopodin in Dendritic Spine Plasticity of the Developing Hippocampus. Journal of Neuroscience, 2013, 33, 12510-12518.	1.7	54
47	Abatacept in B7-1–Positive Proteinuric Kidney Disease. New England Journal of Medicine, 2013, 369, 2416-2423.	13.9	342
48	Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease. Journal of Biological Chemistry, 2013, 288, 36598-36609.	1.6	49
49	Dynamin-mediated Nephrin phosphorylation regulates glucose-stimulated insulin release in pancreatic beta cells Journal of Biological Chemistry, 2013, 288, 1277.	1.6	0
50	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. Journal of Clinical Investigation, 2013, 123, 3243-3253.	3.9	196
51	Dynamin-mediated Nephrin Phosphorylation Regulates Glucose-stimulated Insulin Release in Pancreatic Beta Cells. Journal of Biological Chemistry, 2012, 287, 28932-28942.	1.6	17
52	Fibroblast growth factor 23 and the heart. Current Opinion in Nephrology and Hypertension, 2012, 21, 369-375.	1.0	45
53	Expression of fgf23 and Âklotho in developing embryonic tissues and adult kidney of the zebrafish, Danio rerio. Nephrology Dialysis Transplantation, 2012, 27, 4314-4322.	0.4	27
54	Regarding Maas's editorial letter on serum suPAR levels. Kidney International, 2012, 82, 492.	2.6	6

#	Article	IF	CITATIONS
55	The calcineurin–NFAT pathway allows for urokinase receptor-mediated beta3 integrin signaling to cause podocyte injury. Journal of Molecular Medicine, 2012, 90, 1407-1420.	1.7	41
56	FIBROBLAST GROWTH FACTOR 23 INDUCES LEFT VENTRICULAR HYPERTROPHY. Journal of the American College of Cardiology, 2012, 59, E1059.	1.2	1
57	Rescue of tropomyosin deficiency in <i>Drosophila</i> and human cancer cells by synaptopodin reveals a role of tropomyosin α in RhoA stabilization. EMBO Journal, 2012, 31, 1028-1040.	3.5	34
58	CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. Journal of Clinical Investigation, 2012, 122, 780-780.	3.9	3
59	Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner. Journal of Clinical Investigation, 2012, 122, 781-781.	3.9	1
60	Angiotensin II Contributes to Podocyte Injury by Increasing TRPC6 Expression via an NFAT-Mediated Positive Feedback Signaling Pathway. American Journal of Pathology, 2011, 179, 1719-1732.	1.9	180
61	FGF23 induces left ventricular hypertrophy. Journal of Clinical Investigation, 2011, 121, 4393-4408.	3.9	1,684
62	TRPC6 in podocytes: questions and commentary on the article by Jiang <i>et al</i> ., â€~Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca ²⁺ and RhoA activation'. Experimental Biology and Medicine, 2011, 236, 1361-1361.	1.1	0
63	Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. Journal of Lipid Research, 2011, 52, 480-488.	2.0	153
64	Wnt/β-Catenin Pathway in Podocytes Integrates Cell Adhesion, Differentiation, and Survival. Journal of Biological Chemistry, 2011, 286, 26003-26015.	1.6	166
65	COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. Journal of Clinical Investigation, 2011, 121, 2013-2024.	3.9	343
66	CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. Journal of Clinical Investigation, 2011, 121, 3965-3980.	3.9	124
67	CD2AP Structure And Progression Of Renal Disease. Biophysical Journal, 2009, 96, 132a-133a.	0.2	0
68	The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nature Medicine, 2008, 14, 931-938.	15.2	837
69	Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14106-14111.	3.3	81
70	Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10134-10139.	3.3	91
71	Protein Kinase A, Ca ²⁺ /Calmodulin-Dependent Kinase II, and Calcineurin Regulate the Intracellular Trafficking of Myopodin between the Z-Disc and the Nucleus of Cardiac Myocytes. Molecular and Cellular Biology, 2007, 27, 8215-8227.	1.1	79
72	Synaptopodin Protects Against Proteinuria by Disrupting Cdc42:IRSp53:Mena Signaling Complexes in Kidney Podocytes. American Journal of Pathology, 2007, 171, 415-427.	1.9	150

#	Article	IF	CITATIONS
73	Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 2007, 39, 1007-1012.	9.4	624
74	Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends in Cell Biology, 2007, 17, 428-437.	3.6	474
75	Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nature Cell Biology, 2006, 8, 485-491.	4.6	354
76	TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nature Genetics, 2005, 37, 739-744.	9.4	747
77	Promotion of importin α–mediated nuclear import by the phosphorylation-dependent binding of cargo protein to 14-3-3. Journal of Cell Biology, 2005, 169, 415-424.	2.3	45
78	Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner. Journal of Clinical Investigation, 2005, 115, 1188-1198.	3.9	249
79	Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner. Journal of Clinical Investigation, 2005, 115, 1188-1198.	3.9	184
80	Induction of B7-1 in podocytes is associated with nephrotic syndrome. Journal of Clinical Investigation, 2004, 113, 1390-1397.	3.9	495
81	Novel concepts in understanding and management of glomerular proteinuria. Nephrology Dialysis Transplantation, 2002, 17, 951-955.	0.4	31
82	Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein. Journal of Cell Biology, 2001, 155, 393-404.	2.3	122
83	Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin, Journal of Clinical Investigation, 2001, 108, 1621-1629.	3.9	491