Ursel Bangert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5990020/publications.pdf

Version: 2024-02-01

840776 794594 23 460 11 19 citations h-index g-index papers 29 29 29 787 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrostatically Driven Polarization Flop and Strainâ€Induced Curvature in Freeâ€Standing Ferroelectric Superlattices. Advanced Materials, 2022, 34, e2106826.	21.0	18
2	Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5525-5536.	8.0	7
3	TopoTEM: A Python Package for Quantifying and Visualizing Scanning Transmission Electron Microscopy Data of Polar Topologies. Microscopy and Microanalysis, 2022, , 1-9.	0.4	7
4	Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions. ACS Nano, 2022, 16, 8917-8927.	14.6	8
5	Understanding and Controlling the Evolution of Nanomorphology and Crystallinity of Organic Bulkâ∈Heterojunction Blends with Solvent Vapor Annealing. Solar Rrl, 2022, 6, .	5.8	8
6	Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature. Advanced Materials, 2022, 34, .	21.0	10
7	Metal–ferroelectric supercrystals with periodically curved metallic layers. Nature Materials, 2021, 20, 495-502.	27.5	39
8	Stretching the Equilibrium Limit of Sn in Ge _{1–<i>x</i>} Sn _{<i>x</i>} Nanowires: Implications for Field Effect Transistors. ACS Applied Nano Materials, 2021, 4, 1048-1056.	5.0	6
9	Aberration corrected STEM techniques to investigate polarization in ferroelectric domain walls and vortices. APL Materials, 2021, 9, .	5.1	15
10	Anomalous Motion of Charged Domain Walls and Associated Negative Capacitance in Copper–Chlorine Boracite. Advanced Materials, 2021, 33, e2008068.	21.0	19
11			
	Probing the Dynamics of Topologically Protected Charged Ferroelectric Domain Walls with the Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032.	0.4	3
12	Probing the Dynamics of Topologically Protected Charged Ferroelectric Domain Walls with the Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032. Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. ACS Applied Materials & Comprehensive Optical Scale Characterization.	0.4 8.0	3
12	Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032. Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological		
	Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032. Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. ACS Applied Materials & Distriction amplication. ACS Applied Materials & Distriction amplication. Revealing Early Stage Nucleation Events of Pharmaceutical Crystals Using Liquid Phase Electron	8.0	4
13	Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032. Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. ACS Applied Materials & Districtional Characterization. ACS Applied Materials & Districtional Crystals Using Liquid Phase Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 206-207. Plasmons in MoS ₂ studied via experimental and theoretical correlation of energy loss	8.0	0
13 14	Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032. Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. ACS Applied Materials & Districtional Characterization. ACS Applied Materials & Districtional Crystals Using Liquid Phase Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 206-207. Plasmons in MoS ₂ studied via experimental and theoretical correlation of energy loss spectra. Journal of Microscopy, 2020, 279, 256-264. Visualising early-stage liquid phase organic crystal growth <i>via liquid cell electron microscopy.</i>	8.0 0.4 1.8	4 0 22
13 14 15	Electron Beam at the Atomic Scale. Microscopy and Microanalysis, 2020, 26, 3030-3032. Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. ACS Applied Materials & Distriction amplication. ACS Applied Materials & Distriction amplication. ACS Applied Materials & Distriction amplication. ACS Applied Materials & Distriction and Distriction. ACS Applied Materials & Distriction and Distriction. ACS Applied Materials & Di	8.0 0.4 1.8	4 0 22 29

#	Article	IF	CITATIONS
19	Local Plasmon Engineering in Doped Graphene. ACS Nano, 2018, 12, 1837-1848.	14.6	25
20	Spark-Discharge Plasma as a Method to Produce Low AC Loss Multifilamentary (RE)Ba2Cu3 O7 Coated Conductors. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	1
21	Silicon–Carbon Bond Inversions Driven by 60-keV Electrons in Graphene. Physical Review Letters, 2014, 113, 115501.	7.8	123
22	Atomically resolved imaging of highly ordered alternating fluorinated graphene. Nature Communications, 2014, 5, 4902.	12.8	42
23	Evolution of Cu-Bi-Zn-S colloidal nanorods via in situ generated metal-semiconductor heterostructures. , 0, , .		0