
Josep Puigmarti-Luis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5989623/publications.pdf Version: 2024-02-01

LOSED PHICMADTI-LIUS

#	Article	IF	CITATIONS
1	Supramolecular Conducting Nanowires from Organogels. Angewandte Chemie - International Edition, 2007, 46, 238-241.	7.2	243
2	Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 2018, 11, 13-21.	2.3	193
3	3Dâ€Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuronâ€Like Cells. Advanced Functional Materials, 2020, 30, 1910323.	7.8	157
4	Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic <i>C</i> ₃ -Symmetrical Ĩ€-Functional Molecule. Journal of the American Chemical Society, 2011, 133, 8344-8353.	6.6	154
5	MOFBOTS: Metal–Organicâ€Frameworkâ€Based Biomedical Microrobots. Advanced Materials, 2019, 31, e1901592.	11.1	139
6	Assembly of functional molecular nanostructures on surfaces. Chemical Society Reviews, 2008, 37, 490-504.	18.7	135
7	Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release, 2011, 150, 87-93.	4.8	120
8	Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures. Chemical Society Reviews, 2018, 47, 3788-3803.	18.7	119
9	Microfluidic platforms: a mainstream technology for the preparation of crystals. Chemical Society Reviews, 2014, 43, 2253-2271.	18.7	111
10	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	2.2	109
11	High-density micro-arrays for mass spectrometry. Lab on A Chip, 2010, 10, 3206.	3.1	105
12	Coordination Polymer Nanofibers Generated by Microfluidic Synthesis. Journal of the American Chemical Society, 2011, 133, 4216-4219.	6.6	96
13	Mobile Magnetic Nanocatalysts for Bioorthogonal Targeted Cancer Therapy. Advanced Functional Materials, 2018, 28, 1705920.	7.8	92
14	Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Materials Horizons, 2019, 6, 1512-1516.	6.4	88
15	Imaging Technologies for Biomedical Micro―and Nanoswimmers. Advanced Materials Technologies, 2019, 4, 1800575.	3.0	83
16	Shaping Supramolecular Nanofibers with Nanoparticles Forming Complementary Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1861-1865.	7.2	82
17	Noncovalent Control for Bottom-Up Assembly of Functional Supramolecular Wires. Journal of the American Chemical Society, 2006, 128, 12602-12603.	6.6	81
18	Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nature Communications, 2019, 10, 1439.	5.8	76

JOSEP PUIGMARTI-LUIS

#	Article	IF	CITATIONS
19	Metal–Organic Frameworks in Motion. Chemical Reviews, 2020, 120, 11175-11193.	23.0	75
20	A Microfluidic Approach for the Formation of Conductive Nanowires and Hollow Hybrid Structures. Advanced Materials, 2010, 22, 2255-2259.	11.1	74
21	Gels as a soft matter route to conducting nanostructured organic and composite materials. Soft Matter, 2010, 6, 1605.	1.2	68
22	Green synthesis of imine-based covalent organic frameworks in water. Chemical Communications, 2020, 56, 6704-6707.	2.2	68
23	Biomimetic Synthesis of Sub-20 nm Covalent Organic Frameworks in Water. Journal of the American Chemical Society, 2020, 142, 3540-3547.	6.6	68
24	Advanced technologies for the fabrication of MOF thin films. Materials Horizons, 2021, 8, 168-178.	6.4	68
25	Biodegradable Metal–Organic Frameworkâ€Based Microrobots (MOFBOTs). Advanced Healthcare Materials, 2020, 9, e2001031.	3.9	64
26	Solvent effect on the morphology and function of novel gel-derived molecular materials. Journal of Materials Chemistry, 2010, 20, 466-474.	6.7	63
27	Twists and turns in the hierarchical self-assembly pathways of a non-amphiphilic chiral supramolecular material. Chemical Communications, 2012, 48, 4552.	2.2	57
28	Milliseconds Make the Difference in the Far-from-Equilibrium Self-Assembly of Supramolecular Chiral Nanostructures. Journal of the American Chemical Society, 2016, 138, 6920-6923.	6.6	57
29	Supramolecular electroactive organogel and conducting nanofibers with C3-symmetrical architectures. Journal of Materials Chemistry, 2009, 19, 4495.	6.7	56
30	Highly Conductive Single-Molecule Wires with Controlled Orientation by Coordination of Metalloporphyrins. Nano Letters, 2014, 14, 4751-4756.	4.5	48
31	Chemical and Constitutional Influences in the Self-Assembly of Functional Supramolecular Hydrogen-Bonded Nanoscopic Fibres. Chemistry - A European Journal, 2006, 12, 9161-9175.	1.7	46
32	Biodegradable Small‣cale Swimmers for Biomedical Applications. Advanced Materials, 2021, 33, e2102049.	11.1	44
33	Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning. Polymer, 2015, 66, 268-276.	1.8	37
34	Rich Phase Behavior in a Supramolecular Conducting Material Derived from an Organogelator. Advanced Functional Materials, 2009, 19, 934-941.	7.8	36
35	Bottom-up assembly of high density molecular nanowire cross junctions at a solid/liquid interface. Chemical Communications, 2008, , 703-705.	2.2	34
36	Growing and Shaping Metal–Organic Framework Single Crystals at the Millimeter Scale. Journal of the American Chemical Society, 2020, 142, 9372-9381.	6.6	32

JOSEP PUIGMARTI-LUIS

#	Article	IF	CITATIONS
37	Conductive properties of triphenylene MOFs and COFs. Coordination Chemistry Reviews, 2022, 460, 214459.	9.5	32
38	Coordination-directed self-assembly of a simple benzothiadiazole-fused tetrathiafulvalene to low-bandgap metallogels. Chemical Communications, 2015, 51, 15063-15066.	2.2	31
39	Use of unnatural β-peptides as a self-assembling component in functional organic fibres. Organic and Biomolecular Chemistry, 2010, 8, 1661.	1.5	29
40	Continuous- versus Segmented-Flow Microfluidic Synthesis in Materials Science. Crystals, 2019, 9, 12.	1.0	29
41	Mineralizationâ€Inspired Synthesis of Magnetic Zeolitic Imidazole Framework Composites. Angewandte Chemie - International Edition, 2019, 58, 13550-13555.	7.2	27
42	Synthesis of graphene-based photocatalysts for water splitting by laser-induced doping with ionic liquids. Carbon, 2018, 130, 48-58.	5.4	26
43	CANDYBOTS: A New Generation of 3Dâ€Printed Sugarâ€Based Transient Smallâ€Scale Robots. Advanced Materials, 2020, 32, e2005652.	11.1	26
44	Controlling the length and location of in situ formed nanowires by means of microfluidic tools. Lab on A Chip, 2011, 11, 753-757.	3.1	25
45	TTF-based bent-core liquid crystals. Chemical Communications, 2008, , 2523.	2.2	22
46	Confined Synthesis and Integration of Functional Materials in Sub-nanoliter Volumes. ACS Nano, 2013, 7, 183-190.	7.3	22
47	Laser-induced chemical transformation of graphene oxide–iron oxide nanoparticles composites deposited on polymer substrates. Carbon, 2015, 93, 373-383.	5.4	22
48	Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients. Advanced Materials, 2016, 28, 8150-8155.	11.1	22
49	Localized, Stepwise Template Growth of Functional Nanowires from an Amino Acid-Supported Framework in a Microfluidic Chip. ACS Nano, 2014, 8, 818-826.	7.3	21
50	Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Small‧cale Robotics. Advanced Functional Materials, 2022, 32, .	7.8	21
51	Self-assembly of supramolecular wires and cross-junctions and efficient electron tunnelling across them. Chemical Science, 2011, 2, 1945.	3.7	20
52	Bottom-up assembly of a surface-anchored supramolecular rotor enabled using a mixed self-assembled monolayer and pre-complexed components. Chemical Communications, 2014, 50, 82-84.	2.2	20
53	Tuning Singleâ€Molecule Conductance in Metalloporphyrinâ€Based Wires via Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 19193-19201.	7.2	19
54	Exploiting Reactionâ€Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angewandte Chemie - International Edition, 2021, 60, 15920-15927.	7.2	19

#	Article	IF	CITATIONS
55	Anisotropy in structural and physical properties in tetrathiafulvalene derivatives-based zone-cast layers as seen by Raman spectroscopy, UV-visible spectroscopy, and field effect measurements. Journal of Applied Physics, 2010, 108, 014504.	1.1	18
56	Monolayer self-assembly at liquid–solid interfaces: chirality and electronic properties of molecules at surfaces. Journal of Physics Condensed Matter, 2008, 20, 184003.	0.7	17
57	SERS Barcode Libraries: A Microfluidic Approach. Advanced Science, 2020, 7, 1903172.	5.6	17
58	Helical Klinotactic Locomotion of Two‣ink Nanoswimmers with Dualâ€Function Drug‣oaded Soft Polysaccharide Hinges. Advanced Science, 2021, 8, 2004458.	5.6	16
59	Chirality transfer from a 3D macro shape to the molecular level by controlling asymmetric secondary flows. Nature Communications, 2022, 13, 1766.	5.8	16
60	"Dualâ€Template―Synthesis of Oneâ€Dimensional Conductive Nanoparticle Superstructures from Coordination Metal–Peptide Polymer Crystals. Small, 2013, 9, 4160-4167.	5.2	14
61	Drug-Loaded Supramolecular Gels Prepared in a Microfluidic Platform: Distinctive Rheology and Delivery through Controlled Far-from-Equilibrium Mixing. ACS Omega, 2017, 2, 8849-8858.	1.6	14
62	In flow-based technologies: A new paradigm for the synthesis and processing of covalent-organic frameworks. Chemical Engineering Journal, 2022, 435, 135117.	6.6	14
63	Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochemistry Communications, 2017, 81, 97-101.	2.3	13
64	Nanocomposites combining conducting and superparamagnetic components prepared via an organogel. Soft Matter, 2011, 7, 2755.	1.2	12
65	Microfluidicâ€Assisted Blade Coating of Compositional Libraries for Combinatorial Applications: The Case of Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 2001308.	10.2	12
66	Inâ€Flow MOF Lithography. Advanced Materials Technologies, 2019, 4, 1800666.	3.0	10
67	Synthesis of 2D Porous Crystalline Materials in Simulated Microgravity. Advanced Materials, 2021, 33, e2101777.	11.1	10
68	Magnetoelectric coupling in micropatterned BaTiO3/CoFe2O4 epitaxial thin film structures: Augmentation and site-dependency. Applied Physics Letters, 2021, 119, .	1.5	10
69	Roomâ€Temperature Spinâ€Dependent Transport in Metalloporphyrinâ€Based Supramolecular Wires. Angewandte Chemie - International Edition, 2021, 60, 25958-25965.	7.2	9
70	Layerâ€By‣ayer Electropeeling of Organic Conducting Material Imaged In Real Time. Small, 2009, 5, 214-220.	5.2	8
71	Hierarchical growth of curved organic nanowires upon evaporation induced self-assembly. Chemical Communications, 2014, 50, 13216-13219.	2.2	8
72	Liquid atomic layer deposition as emergent technology for the fabrication of thin films. Dalton Transactions, 2021, 50, 6373-6381.	1.6	8

#	Article	IF	CITATIONS
73	The electrochemical manipulation of apolar solvent drops in aqueous electrolytes by altering the surface polarity of polypyrrole architectures. Electrochemistry Communications, 2015, 54, 32-35.	2.3	7
74	Pathway selection as a tool for crystal defect engineering: A case study with a functional coordination polymer. Applied Materials Today, 2020, 20, 100632.	2.3	7
75	Powering and Fabrication of Small-Scale Robotics Systems. Current Robotics Reports, 2021, 2, 427-440.	5.1	7
76	Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis. Nanoscale, 2011, 3, 937.	2.8	6
77	Mineralizationâ€Inspired Synthesis of Magnetic Zeolitic Imidazole Framework Composites. Angewandte Chemie, 2019, 131, 13684-13689.	1.6	5
78	Tuning Singleâ€Molecule Conductance in Metalloporphyrinâ€Based Wires via Supramolecular Interactions. Angewandte Chemie, 2020, 132, 19355-19363.	1.6	5
79	Roomâ€Temperature Spinâ€Dependent Transport in Metalloporphyrinâ€Based Supramolecular Wires. Angewandte Chemie, 2021, 133, 26162-26169.	1.6	5
80	Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment. Journal of Visualized Experiments, 2016, , .	0.2	3
81	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.2	3
82	Exploiting electrolyte confinement effects for the electrosynthesis of two-engine micromachines. Applied Materials Today, 2020, 19, 100629.	2.3	3
83	An interdisciplinary and application-oriented approach to teach microfluidics. Biomicrofluidics, 2021, 15, 014104.	1.2	3
84	Bottom-up on-crystal in-chip formation of a conducting salt and a view of its restructuring: from organic insulator to conducting "switch―through microfluidic manipulation. Chemical Science, 2015, 6, 3471-3477.	3.7	2
85	Functional supramolecular tetrathiafulvalene-based films with mixed valences states. Polymer, 2016, 103, 251-260.	1.8	2
86	Guided assembly of nanowires and their integration in microfluidic devices. Materials Research Society Symposia Proceedings, 2011, 1346, 1.	0.1	1
87	CHAPTER 7. Optic and Electronic Applications of Molecular Gels. RSC Soft Matter, 2013, , 195-254.	0.2	1
88	Exploiting Reactionâ€Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angewandte Chemie, 2021, 133, 16056-16063.	1.6	1
89	Metal–Organic Frameworks: Inâ€Flow MOF Lithography (Adv. Mater. Technol. 6/2019). Advanced Materials Technologies, 2019, 4, 1970035.	3.0	0
90	Innentitelbild: Exploiting Reactionâ€Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. 29/2021). Angewandte Chemie, 2021, 133, 15794-15794.	1.6	0

#	Article	IF	CITATIONS
91	Assembling Supramolecular Rotors on Surfaces Under Ambient Conditions. Advances in Atom and Single Molecule Machines, 2015, , 127-141.	0.0	0