Max Troell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5989058/publications.pdf

Version: 2024-02-01

24978 17546 21,700 132 57 121 citations h-index g-index papers 142 142 142 19197 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Farming the Ocean – Seaweeds as a Quick Fix for the Climate?. Reviews in Fisheries Science and Aquaculture, 2023, 31, 285-295.	5.1	31
2	The Synergistic Impacts of Anthropogenic Stressors and COVID-19 on Aquaculture: A Current Global Perspective. Reviews in Fisheries Science and Aquaculture, 2022, 30, 123-135.	5.1	24
3	The aquaculture supply chain in the time of covid-19 pandemic: Vulnerability, resilience, solutions and priorities at the global scale. Environmental Science and Policy, 2022, 127, 98-110.	2.4	25
4	Strong and weak sustainability in Nordic aquaculture policies. Aquaculture, 2022, 550, 737841.	1.7	3
5	Seafood in Food Security: A Call for Bridging the Terrestrial-Aquatic Divide. Frontiers in Sustainable Food Systems, 2022, 5, .	1.8	9
6	Factors influencing antimicrobial resistance in the European food system and potential leverage points for intervention: A participatory, One Health study. PLoS ONE, 2022, 17, e0263914.	1.1	10
7	Scientific mobilization of keystone actors for biosphere stewardship. Scientific Reports, 2022, 12, 3802.	1.6	13
8	Economic incentives drive the conversion of agriculture to aquaculture in the Indian Sundarbans: Livelihood and environmental implications of different aquaculture types. Ambio, 2022, 51, 1963-1977.	2.8	11
9	Antimicrobial Resistance in South East Asia: A Participatory Systems Modelling Approach. International Journal of Infectious Diseases, 2022, 116, S14.	1.5	3
10	Aquaculture will continue to depend more on land than sea. Nature, 2022, 603, E2-E4.	13.7	65
11	Sustainable optimization of global aquatic omega-3 supply chain could substantially narrow the nutrient gap. Resources, Conservation and Recycling, 2022, 181, 106260.	5.3	11
12	The vital roles of blue foods in the global food system. Global Food Security, 2022, 33, 100637.	4.0	37
13	Studying Factors Affecting Success of Antimicrobial Resistance Interventions through the Lens of Experience: A Thematic Analysis. Antibiotics, 2022, 11, 639.	1.5	6
14	Prospects of Low Trophic Marine Aquaculture Contributing to Food Security in a Net Zero-Carbon World. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	15
15	Scenarios for Global Aquaculture and Its Role in Human Nutrition. Reviews in Fisheries Science and Aquaculture, 2021, 29, 122-138.	5.1	92
16	AMR-Intervene: a social–ecological framework to capture the diversity of actions to tackle antimicrobial resistance from a One Health perspective. Journal of Antimicrobial Chemotherapy, 2021, 76, 1-21.	1.3	29
17	More than fish: Policy coherence and benefit sharing as necessary conditions for equitable aquaculture development. Marine Policy, 2021, 123, 104271.	1.5	31
18	Blind spots in visions of a "blue economy―could undermine the ocean's contribution to eliminating hunger and malnutrition. One Earth, 2021, 4, 28-38.	3.6	63

#	Article	IF	CITATIONS
19	Time to rethink trophic levels in aquaculture policy. Reviews in Aquaculture, 2021, 13, 1583-1593.	4.6	31
20	Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system. Global Food Security, 2021, 28, 100494.	4.0	151
21	A 20-year retrospective review of global aquaculture. Nature, 2021, 591, 551-563.	13.7	871
22	A rapid review of meta-analyses and systematic reviews of environmental footprints of food commodities and diets. Global Food Security, 2021, 28, 100508.	4.0	7
23	Evolving Perspectives of Stewardship in the Seafood Industry. Frontiers in Marine Science, 2021, 8, .	1.2	15
24	Characterizing social-ecological context and success factors of antimicrobial resistance interventions across the One Health spectrum: analysis of 42 interventions targeting E. coli. BMC Infectious Diseases, 2021, 21, 873.	1.3	13
25	Environmental performance of blue foods. Nature, 2021, 597, 360-365.	13.7	233
26	Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth, 2021, 4, 1220-1232.	3.6	54
27	Compound climate risks threaten aquatic food system benefits. Nature Food, 2021, 2, 673-682.	6.2	48
28	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	6.0	45
29	Building Social-Ecological System Resilience to Tackle Antimicrobial Resistance Across the One Health Spectrum: Protocol for a Mixed Methods Study. JMIR Research Protocols, 2021, 10, e24378.	0.5	9
30	Mapping diversity of species in global aquaculture. Reviews in Aquaculture, 2020, 12, 1090-1100.	4.6	77
31	China at a Crossroads: An Analysis of China's Changing Seafood Production and Consumption. One Earth, 2020, 3, 32-44.	3.6	70
32	Recirculating Aquaculture Is Possible without Major Energy Tradeoff: Life Cycle Assessment of Warmwater Fish Farming in Sweden. Environmental Science & Environmental Science & 2020, 54, 16062-16070.	4.6	27
33	Corridors of Clarity: Four Principles to Overcome Uncertainty Paralysis in the Anthropocene. BioScience, 2020, 70, 1139-1144.	2.2	14
34	Evidence for action: a One Health learning platform on interventions to tackle antimicrobial resistance. Lancet Infectious Diseases, The, 2020, 20, e307-e311.	4.6	37
35	Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Global Food Security, 2020, 24, 100360.	4.0	88
36	Coevolutionary Governance of Antibiotic and Pesticide Resistance. Trends in Ecology and Evolution, 2020, 35, 484-494.	4.2	41

#	Article	IF	CITATIONS
37	Indonesian aquaculture futuresâ€"identifying interventions for reducing environmental impacts. Environmental Research Letters, 2019, 14, 124062.	2.2	18
38	Reframing the sustainable seafood narrative. Global Environmental Change, 2019, 59, 101991.	3.6	59
39	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
40	Governing the salmon farming industry: Comparison between national regulations and the ASC salmon standard. Marine Policy, 2019, 106, 103534.	1.5	23
41	Combined climate and nutritional performance of seafoods. Journal of Cleaner Production, 2019, 230, 402-411.	4.6	93
42	Societal causes of, and responses to, ocean acidification. Ambio, 2019, 48, 816-830.	2.8	6
43	Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System. Ambio, 2019, 48, 831-854.	2.8	11
44	Certifying farmed seafood., 2019,, 157-178.		4
45	The devil is in the details – the carbon footprint of a shrimp. Frontiers in Ecology and the Environment, 2018, 16, 10-11.	1.9	6
46	Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustainability Science, 2018, 13, 1105-1120.	2.5	147
47	Options for keeping the food system within environmental limits. Nature, 2018, 562, 519-525.	13.7	1,709
48	An attainable global vision for conservation and human wellâ€being. Frontiers in Ecology and the Environment, 2018, 16, 563-570.	1.9	71
49	State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 2018, 5, .	1.2	121
50	Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE, 2018, 13, e0191086.	1.1	63
51	Marine Ecosystem Science on an Intertwined Planet. Ecosystems, 2017, 20, 54-61.	1.6	54
52	The `seafood gap' in the food-water nexus literatureâ€"issues surrounding freshwater use in seafood production chains. Advances in Water Resources, 2017, 110, 505-514.	1.7	55
53	Ocean space for seafood. Nature Ecology and Evolution, 2017, 1, 1224-1225.	3.4	28
54	Shocks to fish production: Identification, trends, and consequences. Global Environmental Change, 2017, 42, 24-32.	3.6	75

#	Article	IF	CITATIONS
55	Seafood from a changing Arctic. Ambio, 2017, 46, 368-386.	2.8	18
56	Rewiring food systems to enhance human health and biosphere stewardship. Environmental Research Letters, 2017, 12, 100201.	2.2	112
57	Aquaculture â~†., 2017, , .		4
58	Eco-Labeled Seafood: Determinants for (Blue) Green Consumption. Sustainability, 2016, 8, 884.	1.6	46
59	Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence. World Development, 2016, 79, 177-196.	2.6	515
60	Towards a typology of interactions between small-scale fisheries and global seafood trade. Marine Policy, 2016, 65, 1-10.	1.5	65
61	Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish and Fisheries, 2016, 17, 1175-1182.	2.7	104
62	Synchronous failure: the emerging causal architecture of global crisis. Ecology and Society, 2015, 20,	1.0	144
63	Transnational Corporations as â€~Keystone Actors' in Marine Ecosystems. PLoS ONE, 2015, 10, e0127533.	1.1	187
64	China's aquaculture and the world's wild fisheries. Science, 2015, 347, 133-135.	6.0	315
65	A revolution without people? Closing the people–policy gap in aquaculture development. Aquaculture, 2015, 447, 44-55.	1.7	119
66	Antimicrobial use in aquaculture: Some complementing facts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3317.	3.3	21
67	Use of Wastewater from Striped Catfish (Pangasianodon hypophthalmus) Pond Culture for Integrated Rice–Fish–Vegetable Farming Systems in the Mekong Delta, Vietnam. Agroecology and Sustainable Food Systems, 2015, 39, 580-597.	1.0	22
68	Contagious exploitation of marine resources. Frontiers in Ecology and the Environment, 2015, 13, 435-440.	1.9	75
69	Stepwise function of natural growth for <i>Scylla serrata</i> in East Africa: a valuable tool for assessing growth of mud crabs in aquaculture. Aquaculture Research, 2015, 46, 2938-2953.	0.9	5
70	Applying resilience thinking to production ecosystems. Ecosphere, 2014, 5, 1-11.	1.0	84
71	Comment on â€Water footprint of marine protein consumption—aquaculture's link to agriculture'. Environmental Research Letters, 2014, 9, 109001.	2.2	16
72	Farming of Bluefin Tuna–Reconsidering Global Estimates and Sustainability Concerns. Reviews in Fisheries Science and Aquaculture, 2014, 22, 184-192.	5.1	27

#	Article	lF	Citations
73	Does aquaculture add resilience to the global food system?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13257-13263.	3.3	468
74	Eco-certification of Farmed Seafood: Will it Make a Difference?. Ambio, 2013, 42, 659-674.	2.8	69
75	Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment and Development Economics, 2013 , 18 , 111 - 132 .	1.3	530
76	Modeling Social–Ecological Scenarios in Marine Systems. BioScience, 2013, 63, 735-744.	2.2	13
77	Aquaculture., 2013,, 189-201.		8
78	Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture ^a . Journal of Fish Biology, 2013, 83, 1067-1084.	0.7	242
79	Modeling SocialEcological Scenarios in Marine Systems. BioScience, 2013, 63, 735-744.	2.2	55
80	Regime Shifts and Management. , 2013, , 339-348.		0
81	Life Cycle Assessments and Their Applications to Aquaculture Production Systems. , 2013, , 1050-1066.		4
82	Confronting Feedbacks of Degraded Marine Ecosystems. Ecosystems, 2012, 15, 695-710.	1.6	179
83	Growth and reproductive simulation of candidate shellfish species at fish cages in the Southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture, 2012, 324-325, 259-266.	1.7	90
84	Regime shifts and management. Ecological Economics, 2012, 84, 15-22.	2.9	124
85	Sea Cucumber Aquaculture in the Western Indian Ocean: Challenges for Sustainable Livelihood and Stock Improvement. Ambio, 2012, 41, 109-121.	2.8	64
86	Life Cycle Assessments and Their Applications to Aquaculture Production Systems., 2012,, 5893-5909.		4
87	Energy Intensity of Agriculture and Food Systems. Annual Review of Environment and Resources, 2011, 36, 223-246.	5.6	240
88	Fishing for Prawn Larvae in Bangladesh: An Important Coastal Livelihood Causing Negative Effects on the Environment. Ambio, 2010, 39, 20-29.	2.8	41
89	Prawn postlarvae fishing in coastal Bangladesh: Challenges for sustainable livelihoods. Marine Policy, 2010, 34, 218-227.	1.5	45
90	Ecological engineering in aquaculture â€" Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 2009, 297, 1-9.	1.7	457

#	Article	IF	CITATIONS
91	Integrated seaweed cultivation on an abalone farm in South Africa. Journal of Applied Phycology, 2008, 20, 579-595.	1.5	75
92	Mariculture Waste Management. , 2008, , 2211-2217.		28
93	Multitrophic Integration for Sustainable Marine Aquaculture. , 2008, , 2463-2475.		84
94	Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Global Environmental Change, 2007, 17, 238-249.	3.6	163
95	The Need for a Balanced Ecosystem Approach to Blue Revolution Aquaculture. Environment, 2007, 49, 36-43.	0.8	83
96	Adaptive Management of the Great Barrier Reef and the Grand Canyon World Heritage Areas. Ambio, 2007, 36, 586-592.	2.8	77
97	Ecosystem Goods and Services from Swedish Coastal Habitats: Identification, Valuation, and Implications of Ecosystem Shifts. Ambio, 2007, 36, 534-544.	2.8	150
98	Integrated seaweed cultivation on an abalone farm in South Africa., 2007,, 129-145.		0
99	Control of the herbivorous gastropod Fissurella mutabilis (Sow.) in a land-based integrated abalone–seaweed culture. Aquaculture, 2006, 255, 384-388.	1.7	7
100	Abalone farming in South Africa: An overview with perspectives on kelp resources, abalone feed, potential for on-farm seaweed production and socio-economic importance. Aquaculture, 2006, 257, 266-281.	1.7	148
101	Shift in fish assemblage structure due to loss of seagrass Zostera marina habitats in Sweden. Estuarine, Coastal and Shelf Science, 2006, 67, 123-132.	0.9	120
102	Quick Fixes for the Environment: Part of the Solution or Part of the Problem?. Environment, 2006, 48, 20-27.	0.8	32
103	Comparison of Spore Inoculated and Vegetative Propagated Cultivation Methods of Gracilaria chilensis in an Integrated Seaweed and Fish Cage Culture. Aquaculture International, 2005, 13, 409-422.	1.1	51
104	Remote Sensing and Ethnobotanical Assessment of the Mangrove Forest Changes in the Navachiste-San Ignacio-Macapule Lagoon Complex, Sinaloa, Mexico. Ecology and Society, 2005, 10, .	1.0	49
105	Regime Shifts and Ecosystem Service Generation in Swedish Coastal Soft Bottom Habitats: When Resilience is Undesirable. Ecology and Society, 2005, 10, .	1.0	47
106	Aquaculture and Energy Use. , 2004, , 97-108.		49
107	Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 2004, 231, 361-391.	1.7	773
108	Integrated mariculture: asking the right questions. Aquaculture, 2003, 226, 69-90.	1.7	352

#	Article	IF	Citations
109	Mangrove dependence and socio-economic concerns in shrimp hatcheries of Andhra Pradesh, India. Environmental Conservation, 2003, 30, 344-352.	0.7	23
110	Do Penaeid Shrimps have a Preference for Mangrove Habitats? Distribution Pattern Analysis on Inhaca Island, Mozambique. Estuarine, Coastal and Shelf Science, 2002, 55, 427-436.	0.9	46
111	Title is missing!. Environment, Development and Sustainability, 2002, 4, 185-200.	2.7	67
112	Aquaculture., 2001,, 185-198.		6
113	INTEGRATING SEAWEEDS INTO MARINE AQUACULTURE SYSTEMS: A KEY TOWARD SUSTAINABILITY. Journal of Phycology, 2001, 37, 975-986.	1.0	583
114	Effect of aquaculture on world fish supplies. Nature, 2000, 405, 1017-1024.	13.7	2,310
115	Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 2000, 191, 145-161.	1.7	282
116	The Risks and Benefits of Genetically Modified Crops: A Multidisciplinary Perspective. Ecology and Society, 2000, 4, .	0.9	27
117	Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture., 1999,, 603-611.		7
118	Distribution Pattern of Shrimps and Fish AmongAvicenniaandRhizophoraMicrohabitats in the Pagbilao Mangroves, Philippines. Estuarine, Coastal and Shelf Science, 1999, 48, 223-234.	0.9	139
119	Title is missing!. Journal of Applied Phycology, 1999, 11, 89-97.	1.5	150
120	Modelling output and retention of suspended solids in an integrated salmon–mussel culture. Ecological Modelling, 1998, 110, 65-77.	1.2	70
121	THE ECOLOGICAL FOOTPRINT CONCEPT FOR SUSTAINABLE SEAFOOD PRODUCTION: A REVIEW. , 1998, 8, S63-S71.		74
122	The Ecological Footprint Concept for Sustainable Seafood Production: A Review., 1998, 8, S63.		44
123	Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 1997, 156, 45-61.	1.7	231
124	Cage fish farming in the tropical Lake Kariba, Zimbabwe: impact and biogeochemical changes in sediment. Aquaculture Research, 1997, 28, 527-544.	0.9	26
125	Ecological footprint for assessment of resource use and development limitations in shrimp and tilapia aquaculture. Aquaculture Research, 1997, 28, 753-766.	0.9	71
126	Salmon Farming in Context: Response to Blacket al Journal of Environmental Management, 1997, 50, 95-103.	3.8	16

#	Article	IF	CITATIONS
127	Ecological footprint for assessment of resource use and development limitations in shrimp and tilapia aquaculture. Aquaculture Research, 1997, 28, 753-766.	0.9	70
128	Cage fish farming in the tropical Lake Kariba, Zimbabwe: impact and biogeochemical changes in sediment. Aquaculture Research, 1997, 28, 527-544.	0.9	31
129	Managing aquaculture for sustainability in tropical Lake Kariba, Zimbabwe. Ecological Economics, 1996, 18, 141-159.	2.9	62
130	Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia, 1996, 326-327, 75-82.	1.0	102
131	Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). , 1996, , 75-82.		10
132	The Costs of Eutrophication from Salmon Farming: Implications for Policy. Journal of Environmental Management, 1994, 40, 173-182.	3.8	110