Annapina Russo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988854/publications.pdf

Version: 2024-02-01

45 papers

1,631 citations

218381 26 h-index 39 g-index

46 all docs

46 docs citations

46 times ranked

2036 citing authors

#	Article	lF	CITATIONS
1	Antiproliferative Effects of the Aptamer d(GGGT)4 and Its Analogues with an Abasic-Site Mimic Loop on Different Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 5952.	1.8	2
2	PEGylated cationic nanoassemblies based on triblock copolymers to combine siRNA therapeutics with anticancer drugs. Biomaterials Science, 2021, 9, 6251-6265.	2.6	6
3	Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. International Journal of Molecular Sciences, 2021, 22, 1801.	1.8	20
4	Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. International Journal of Molecular Sciences, 2021, 22, 5496.	1.8	67
5			

#	Article	IF	CITATIONS
19	The "Janus face―of the thrombin binding aptamer: Investigating the anticoagulant and antiproliferative properties through straightforward chemical modifications. Bioorganic Chemistry, 2018, 76, 202-209.	2.0	17
20	Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Research, 2017, 45, 8156-8166.	6.5	11
21	Backbone modified TBA analogues endowed with antiproliferative activity. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1213-1221.	1.1	27
22	Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. International Journal of Molecular Sciences, 2017, 18, 140.	1.8	105
23	Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 547.	1.8	45
24	Biotin-targeted Pluronic \hat{A}^{\otimes} P123/F127 mixed micelles delivering niclosamide: A repositioning strategy to treat drug-resistant lung cancer cells. International Journal of Pharmaceutics, 2016, 511, 127-139.	2.6	71
25	rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Scientific Reports, 2016, 6, 38369.	1.6	68
26	Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production. Scientific Reports, 2016, 6, 31491.	1.6	36
27	Cysteine Prevents the Reduction in Keratin Synthesis Induced by Iron Deficiency in Human Keratinocytes. Journal of Cellular Biochemistry, 2016, 117, 402-412.	1.2	41
28	Regulatory role of rpL3 in cell response to nucleolar stress induced by Act D in tumor cells lacking functional p53. Cell Cycle, 2016, 15, 41-51.	1.3	50
29	5-FU targets rpL3 to induce mitochondrial apoptosis via cystathionine-β-synthase in colon cancer cells lacking p53. Oncotarget, 2016, 7, 50333-50348.	0.8	74
30	Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget, 2016, 7, 79670-79687.	0.8	44
31	Biodegradable nanoparticles sequentially decorated with Polyethyleneimine and Hyaluronan for the targeted delivery of docetaxel to airway cancer cells. Journal of Nanobiotechnology, 2015, 13, 29.	4.2	58
32	Human Cystathionine- \hat{l}^2 -Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium. PLoS ONE, 2015, 10, e0136859.	1.1	22
33	Palmitoylethanolamide inhibits rMCP-5 expression by regulating MITF activation in rat chronic granulomatous inflammation. European Journal of Pharmacology, 2014, 725, 64-69.	1.7	29
34	Human rpL3 plays a crucial role in cell response to nucleolar stress induced by 5-FU and L-OHP. Oncotarget, 2014, 5, 11737-11751.	0.8	45
35	Human rpL3 induces Gâ, S arrest or apoptosis by modulating p21 ^{waf1/cip1} levels in a p53-independent manner. Cell Cycle, 2013, 12, 76-87.	1.3	67
36	Discovery of a Novel Small Molecule Inhibitor Targeting the Frataxin/Ubiquitin Interaction via Structure-Based Virtual Screening and Bioassays. Journal of Medicinal Chemistry, 2013, 56, 2861-2873.	2.9	28

#	Article	IF	CITATION
37	Autoregulatory circuit of human rpL3 expression requires hnRNP H1, NPM and KHSRP. Nucleic Acids Research, 2011, 39, 7576-7585.	6.5	35
38	hnRNP H1 and intronic G runs in the splicing control of the human rpL3 gene. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 419-428.	0.9	35
39	Cannabinoids reduce granulomaâ€associated angiogenesis in rats by controlling transcription and expression of mast cell proteaseâ€5. British Journal of Pharmacology, 2008, 154, 1672-1679.	2.7	31
40	cis-acting sequences and trans-acting factors in the localization of mRNA for mitochondrial ribosomal proteins. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 820-829.	0.9	31
41	Local administration of WIN 55,212-2 reduces chronic granuloma-associated angiogenesis in rat by inhibiting NF-ÎB activation. Journal of Molecular Medicine, 2007, 85, 635-645.	1.7	32
42	The 3′-untranslated region directs ribosomal protein-encoding mRNAs to specific cytoplasmic regions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 833-843.	1.9	29
43	Ribosomal protein L7a binds RNA through two distinct RNA-binding domains. Biochemical Journal, 2005, 385, 289-299.	1.7	30
44	Inhibition of granuloma-associated angiogenesis by controlling mast cell mediator release: role of mast cell protease-5. British Journal of Pharmacology, 2005, 145, 24-33.	2.7	34
45	Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Research, 2005, 33, 5965-5977.	6.5	104