
Giuseppe Strangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chirality in Light–Matter Interaction. Advanced Materials, 2023, 35, e2107325.	21.0	43
2	Iridium(III) Complex-Loaded Perfluoropropane Nanobubbles for Enhanced Sonodynamic Therapy. Bioconjugate Chemistry, 2022, 33, 1057-1068.	3.6	7
3	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	3.1	1
4	Fano-resonant ultrathin film optical coatings. Nature Nanotechnology, 2021, 16, 440-446.	31.5	51
5	Tunable magneto-optics in hyperbolic nanoparticles. , 2021, , .		0
6	Biomolecular Sensing in Hybrid Chiral/Hyperbolic Metastructures. , 2021, , 1-14.		0
7	General Inverse Design of Layered Thin-Film Materials with Convolutional Neural Networks. ACS Photonics, 2021, 8, 3641-3650.	6.6	23
8	Magneto-Optical Activity in Nonmagnetic Hyperbolic Nanoparticles. Physical Review Letters, 2021, 127, 217402.	7.8	26
9	Magneto-optics in type-II hyperbolic metamaterial nanoantennas. , 2021, , .		0
10	A Luminescent, Water-Soluble Ir(III) Complex as a Potential Photosensitizer for Two-Photon Photodynamic Therapy. Applied Sciences (Switzerland), 2021, 11, 11596.	2.5	1
11	Designer Bloch plasmon polariton dispersion in grating-coupled hyperbolic metamaterials. APL Photonics, 2020, 5, 076109.	5.7	20
12	Optical properties of metasurfaces infiltrated with liquid crystals. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20390-20396.	7.1	66
13	Thermoplasmonic-biosensing demonstration based on the photothermal response of metallic nanoparticles. Journal of Applied Physics, 2020, 128, 164302.	2.5	1
14	Electron Energy Loss Spectroscopy of Bright and Dark Modes in Hyperbolic Metamaterial Nanostructures. Advanced Optical Materials, 2020, 8, 2000277.	7.3	23
15	Biomolecular Sensing at the Interface between Chiral Metasurfaces and Hyperbolic Metamaterials. ACS Applied Materials & Interfaces, 2020, 12, 30181-30188.	8.0	55
16	Hydrogen gas sensing using aluminum doped ZnO metasurfaces. Nanoscale Advances, 2020, 2, 3452-3459.	4.6	11
17	Compressed and canalized emission of quantum emitters in MIM nano-cavities. Quantum Studies: Mathematics and Foundations, 2020, 7, 355-361.	0.9	1
18	Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics, 2020, 10, 295-314.	6.0	48

#	Article	IF	CITATIONS
19	Hyperbolic dispersion metamaterials and metasurfaces. EPJ Applied Metamaterials, 2020, 7, 11.	1.5	5
20	Ultrathin-film optical coating for angle-independent remote hydrogen sensing. Measurement Science and Technology, 2020, 31, 115201.	2.6	6
21	Hydrogen Sensing Using Thin-Film Perfect Light Absorber. ACS Photonics, 2019, 6, 1889-1894.	6.6	25
22	Perfect Light Absorption in Thin and Ultra-Thin Films and Its Applications. Progress in Optical Science and Photonics, 2019, , 3-27.	0.5	0
23	Generalized Brewster Angle Effect in Thin-Film Optical Absorbers and Its Application for Graphene Hydrogen Sensing. ACS Photonics, 2019, 6, 1610-1617.	6.6	42
24	Manipulating acoustic and plasmonic modes in gold nanostars. Nanoscale Advances, 2019, 1, 2690-2698.	4.6	6
25	Cooperative Energy Transfer Controls the Spontaneous Emission Rate Beyond Field Enhancement Limits. Physical Review Letters, 2019, 122, 203901.	7.8	12
26	Phaseâ€Changeâ€Materialâ€Based Low‣oss Visibleâ€Frequency Hyperbolic Metamaterials for Ultrasensitive Labelâ€Free Biosensing. Advanced Optical Materials, 2019, 7, 1900081.	7.3	74
27	Hyperbolic Meta-Antennas Enable Full Control of Scattering and Absorption of Light. Nano Letters, 2019, 19, 1851-1859.	9.1	62
28	Heat-induced perfect light absorption in thin-film metasurfaces for structural coloring [Invited]. Optical Materials Express, 2019, 9, 1386.	3.0	11
29	Random Lasing Control with Optical Spatial Solitons in Nematic Liquid Crystals. , 2019, , .		0
30	Heterodimeric Plasmonic Nanogaps for Biosensing. Micromachines, 2018, 9, 664.	2.9	2
31	Large-Area Silver–Stibnite Nanoporous Plasmonic Films for Label-Free Biosensing. ACS Applied Materials & Interfaces, 2018, 10, 34991-34999.	8.0	24
32	Beaming random lasers with soliton control. Nature Communications, 2018, 9, 3863.	12.8	54
33	The POLICRYPS liquid-crystalline structure for optical applications. Advanced Optical Technologies, 2018, 7, 273-289.	1.7	2
34	Designer Perfect Light Absorption Using Ultrathin Lossless Dielectrics on Absorptive Substrates. Advanced Optical Materials, 2018, 6, 1800672.	7.3	26
35	Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity. EPJ Applied Metamaterials, 2017, 4, 1.	1.5	39
36	Ultrafast transient optical loss dynamics in exciton–plasmon nano-assemblies. Nanoscale, 2017, 9, 6558-6566.	5.6	15

#	Article	IF	CITATIONS
37	Tunable Black Gold: Controlling the Nearâ€Field Coupling of Immobilized Au Nanoparticles Embedded in Mesoporous Silica Capsules. Advanced Optical Materials, 2017, 5, 1700617.	7.3	20
38	Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic processes. Nanoscale, 2017, 9, 19279-19289.	5.6	33
39	Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities. Optics Letters, 2017, 42, 3598.	3.3	25
40	Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems. Journal of Nanomaterials, 2016, 2016, 1-21.	2.7	27
41	Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer. Optics Express, 2016, 24, 14632.	3.4	4
42	Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials. Advanced Optical Materials, 2016, 4, 1767-1772.	7.3	69
43	Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies. Scientific Reports, 2016, 6, 20002.	3.3	54
44	A multiband perfect absorber based on hyperbolic metamaterials. Scientific Reports, 2016, 6, 26272.	3.3	77
45	Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016, 15, 621-627.	27.5	609
46	Battling absorptive losses by plasmon–exciton coupling in multimeric nanostructures. RSC Advances, 2015, 5, 53245-53254.	3.6	12
47	From Life to Life: through new materials and plasmonics. Rendiconti Lincei, 2015, 26, 127-128.	2.2	1
48	Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials. Rendiconti Lincei, 2015, 26, 129-141.	2.2	12
49	Gain-assisted plasmonic metamaterials: mimicking nature to go across scales. Rendiconti Lincei, 2015, 26, 161-174.	2.2	12
50	Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores. Applied Physics Letters, 2014, 104, 103103.	3.3	30
51	Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix. Journal of Materials Science, 2014, 49, 1805-1811.	3.7	19
52	Improved transmittance in metal-dielectric metamaterials using diffraction grating. Applied Physics Letters, 2014, 104, 171904.	3.3	3
53	Excitation of volume plasmon polaritons in metal-dielectric metamaterials using 1D and 2D diffraction gratings. Journal of Optics (United Kingdom), 2014, 16, 105103.	2.2	28
54	Loss-Mitigated Collective Resonances in Gain-Assisted Plasmonic Mesocapsules. ACS Photonics, 2014, 1, 371-376.	6.6	29

#	Article	IF	CITATIONS
55	Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Scientific Reports, 2014, 4, 6340.	3.3	80
56	Negative refraction in graphene-based hyperbolic metamaterials. Applied Physics Letters, 2013, 103, .	3.3	135
57	Directional spontaneous emission enhancement in hyperbolic metamaterials. Journal of Applied Physics, 2013, 114, .	2.5	44
58	Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Scientific Reports, 2013, 3, 3291.	3.3	105
59	Effects of Gold Nanoparticle Dispersion in a Chiral Liquid Crystal Matrix. Molecular Crystals and Liquid Crystals, 2013, 572, 59-65.	0.9	10
60	Plasmon mediated super-absorber flexible nanocomposites for metamaterials. Nanoscale, 2013, 5, 6097.	5.6	13
61	Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses. Journal of Materials Chemistry, 2012, 22, 8846.	6.7	28
62	General Purpose Soft Template for Photonic Applications: From All-Optical to Electrical Reconfigurability. Molecular Crystals and Liquid Crystals, 2012, 553, 147-152.	0.9	1
63	Universal soft matter template for photonic applications. Soft Matter, 2011, 7, 3739.	2.7	37
64	Dispersed and Encapsulated Gain Medium in Plasmonic Nanoparticles: a Multipronged Approach to Mitigate Optical Losses. ACS Nano, 2011, 5, 5823-5829.	14.6	66
65	Gain induced optical transparency in metamaterials. Applied Physics Letters, 2011, 98, .	3.3	45
66	Anomalous conductivity in PZT thin film deposited on copper substrate electrode. Philosophical Magazine, 2010, 90, 1733-1742.	1.6	0
67	Fast Electro-Optical Device Based on Chiral Liquid Crystals Encapsulated in Periodic Polymer Channels. Molecular Crystals and Liquid Crystals, 2010, 525, 41-49.	0.9	3
68	Statistical analyses of repolarisation current of a PZT film deposited on ITO electrode with different thermal treatments. Philosophical Magazine, 2010, 90, 1575-1584.	1.6	0
69	Short pitch cholesteric electro-optical device based on periodic polymer structures. Applied Physics Letters, 2009, 95, .	3.3	60
70	The influence of drying temperature on the close packed structure of silanized monolayers deposited on indium tin oxide (ITO) substrates. Journal of Materials Research, 2009, 24, 2784-2794.	2.6	3
71	Electro-optical response due to mixed conduction electrodes, compared to ferroelectric ones, in asymmetric nematic liquid crystal cells. Ionics, 2009, 15, 139-149.	2.4	1
72	Model for Light Scattering and Lasing in Dye-Doped Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2008, 488, 317-326.	0.9	3

#	Article	IF	CITATIONS
73	Morphological and electrical investigations of lead zirconium titanate thin films obtained by sol-gel synthesis on indium tin oxide electrodes. Journal of Applied Physics, 2008, 103, 064103.	2.5	11
74	Thermally induced modifications of the optic properties of lead zirconate titanate thin films obtained on different substrates by sol-gel synthesis. Journal of Applied Physics, 2008, 104, 123522.	2.5	5
75	Asymmetric nematic liquid crystal cells containing lead zirconium titanate (PZT) films. Journal of Applied Physics, 2007, 102, 013112.	2.5	13
76	Changes of the electro-optic response of nematic liquid crystal cells due to inserted titania-vanadia films. Journal of Applied Physics, 2005, 97, 013523.	2.5	16
77	Characterization of Tungsten Trioxide Thin Film Deposited by Spin Coating and the Effect on Their Insertion in Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 2005, 429, 237-253.	0.9	11
78	Asymmetric Response to Electric Field in Nematic Liquid Crystal Cells Containing Vanadium Oxide Thin Films Prepared by Sol-Gel Synthesis. Molecular Crystals and Liquid Crystals, 2005, 441, 27-43.	0.9	9
79	Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback. Physical Review Letters, 2005, 94, 063903.	7.8	97
80	Liquid-crystal–electrochromic-material interface: Ap-n-like electro-optic junction. Physical Review E, 2001, 64, 011708.	2.1	17