
Jon S Simons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain Mechanisms Underlying the Subjective Experience of Remembering. Annual Review of Psychology, 2022, 73, 159-186.	9.9	32
2	Episodic Memory Precision and Reality Monitoring Following Stimulation of Angular Gyrus. Journal of Cognitive Neuroscience, 2022, 34, 687-698.	1.1	7
3	I remember it like it was yesterday: Age-related differences in the subjective experience of remembering. Psychonomic Bulletin and Review, 2022, 29, 1223-1245.	1.4	6
4	The devil may be in the details: The need for contextually rich stimuli in memory consolidation research. Cognitive Neuroscience, 2022, , 1-2.	0.6	0
5	Memory precision of object-location binding is unimpaired in <i>APOE</i> ε4-carriers with spatial navigation deficits. Brain Communications, 2021, 3, fcab087.	1.5	10
6	Executive function and high ambiguity perceptual discrimination contribute to individual differences in mnemonic discrimination in older adults. Cognition, 2021, 209, 104556.	1.1	19
7	A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. Trends in Neurosciences, 2021, 44, 452-463.	4.2	123
8	Hippocampal–Cortical Encoding Activity Predicts the Precision of Episodic Memory. Journal of Cognitive Neuroscience, 2021, 33, 2328-2341.	1.1	12
9	Evidence in cortical folding patterns for prenatal predispositions to hallucinations in schizophrenia. Translational Psychiatry, 2020, 10, 387.	2.4	17
10	Towards an interdisciplinary science of the subjective experience of remembering. Current Opinion in Behavioral Sciences, 2020, 32, 29-34.	2.0	2
11	Healthy ageing reduces the precision of episodic memory retrieval Psychology and Aging, 2020, 35, 124-142.	1.4	49
12	Exploring the neurocognitive basis of episodic recollection in autism. Psychonomic Bulletin and Review, 2019, 26, 163-181.	1.4	34
13	Neural evidence for age-related differences in representational quality and strategic retrieval processes. Neurobiology of Aging, 2019, 84, 50-60.	1.5	53
14	Paracingulate Sulcus Morphology and Hallucinations in Clinical and Nonclinical Groups. Schizophrenia Bulletin, 2019, 45, 733-741.	2.3	31
15	Multimodal Integration and Vividness in the Angular Gyrus During Episodic Encoding and Retrieval. Journal of Neuroscience, 2019, 39, 4365-4374.	1.7	68
16	Meta-analytic Evidence for the Plurality of Mechanisms in Transdiagnostic Structural MRI Studies of Hallucination Status. EClinicalMedicine, 2019, 8, 57-71.	3.2	29
17	Flexible updating of dynamic knowledge structures. Scientific Reports, 2019, 9, 2272.	1.6	20
18	Interpretation of published meta-analytical studies affected by implementation errors in the GingerALE software. Neuroscience and Biobehavioral Reviews, 2019, 102, 424-426.	2.9	3

#	Article	IF	CITATIONS
19	Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil― Information. Journal of Cognitive Neuroscience, 2018, 30, 667-679.	1.1	11
20	Specifying a Causal Role for Angular Gyrus in Autobiographical Memory. Journal of Neuroscience, 2018, 38, 10438-10443.	1.7	82
21	Monitoring what is real: The effects of modality and action on accuracy and type of reality monitoring error. Cortex, 2017, 87, 108-117.	1.1	22
22	Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia, 2017, 96, 137-149.	0.7	97
23	Reality monitoring impairment in schizophrenia reflects specific prefrontal cortex dysfunction. NeuroImage: Clinical, 2017, 14, 260-268.	1.4	31
24	Brain Mechanisms of Reality Monitoring. Trends in Cognitive Sciences, 2017, 21, 462-473.	4.0	87
25	Reduced multimodal integration of memory features following continuous theta burst stimulation of angular gyrus. Brain Stimulation, 2017, 10, 624-629.	0.7	59
26	Testing continuum models of psychosis: No reduction in source monitoring ability in healthy individuals prone to auditory hallucinations. Cortex, 2017, 91, 197-207.	1.1	35
27	Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism. Cerebral Cortex, 2017, 27, 888-902.	1.6	90
28	Eye movements reveal a dissociation between memory encoding and retrieval in adults with autism. Cognition, 2017, 159, 127-138.	1.1	23
29	No effect of hippocampal lesions on stimulus-response bindings. Neuropsychologia, 2017, 103, 106-114.	0.7	7
30	Distinct Roles for the Anterior Cingulate and Dorsolateral Prefrontal Cortices During Conflict Between Abstract Rules. Cerebral Cortex, 2017, 27, 34-45.	1.6	22
31	Declines in representational quality and strategic retrieval processes contribute to age-related increases in false recognition Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 1883-1897.	0.7	31
32	Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval. Journal of Neuroscience, 2016, 36, 5462-5471.	1.7	151
33	Reality Monitoring and Metamemory in Adults with Autism Spectrum Conditions. Journal of Autism and Developmental Disorders, 2016, 46, 2186-2198.	1.7	31
34	The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 2016, 69, 113-123.	2.9	162
35	The effects of hippocampal lesions on MRI measures of structural and functional connectivity. Hippocampus, 2016, 26, 1447-1463.	0.9	42
36	Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil― information. Neuropsychologia, 2016, 89, 356-363.	0.7	9

#	Article	IF	CITATIONS
37	Higher Body Mass Index is Associated with Episodic Memory Deficits in Young Adults. Quarterly Journal of Experimental Psychology, 2016, 69, 2305-2316.	0.6	116
38	Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. ELife, 2016, 5, .	2.8	182
39	Impaired recollection of visual scene details in adults with autism spectrum conditions Journal of Abnormal Psychology, 2015, 124, 565-575.	2.0	21
40	Reflections of Oneself: Neurocognitive Evidence for Dissociable Forms of Self-Referential Recollection. Cerebral Cortex, 2015, 25, 2648-2657.	1.6	23
41	A ten-year follow-up of a study of memory for the attack of September 11, 2001: Flashbulb memories and memories for flashbulb events Journal of Experimental Psychology: General, 2015, 144, 604-623.	1.5	133
42	Identifying age-invariant and age-limited mechanisms for enhanced memory performance: Insights from self-referential processing in younger and older adults Psychology and Aging, 2015, 30, 324-333.	1.4	9
43	Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nature Communications, 2015, 6, 8956.	5.8	86
44	Continuous Theta Burst Stimulation of Angular Gyrus Reduces Subjective Recollection. PLoS ONE, 2014, 9, e110414.	1.1	86
45	Did I turn off the gas? Reality monitoring of everyday actions. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 209-219.	1.0	16
46	Intentional retrieval suppression can conceal guilty knowledge in ERP memory detection tests. Biological Psychology, 2013, 94, 1-11.	1.1	38
47	Multimodal imaging reveals the spatiotemporal dynamics of recollection. NeuroImage, 2013, 68, 141-153.	2.1	34
48	Executive functions are employed to process episodic and relational memories in children with autism spectrum disorders Neuropsychology, 2013, 27, 615-627.	1.0	52
49	Prefrontal control of attention to threat. Frontiers in Human Neuroscience, 2013, 7, 24.	1.0	40
50	Use of explicit memory cues following parietal lobe lesions. Neuropsychologia, 2012, 50, 2992-3003.	0.7	26
51	What is the parietal lobe contribution to long-term memory?. Cortex, 2012, 48, 1381-1382.	1.1	22
52	Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12788-12793.	3.3	486
53	Event-related potential evidence for separable automatic and controlled retrieval processes in proactive interference. Brain Research, 2012, 1455, 90-102.	1.1	7
54	Neural correlates of reality monitoring during adolescence. NeuroImage, 2011, 55, 1393-1400.	2.1	21

#	Article	IF	CITATIONS
55	Looking to the future: Automatic regulation of attention between current performance and future plans. Neuropsychologia, 2011, 49, 2258-2271.	0.7	27
56	A Specific Brain Structural Basis for Individual Differences in Reality Monitoring. Journal of Neuroscience, 2011, 31, 14308-14313.	1.7	91
57	Time-travelling and mind-travelling: examining individual differences in self-projection. Psychiatria Danubina, 2011, 23 Suppl 1, S182-6.	0.2	0
58	The Scale of Functional Specialization within Human Prefrontal Cortex: Figure 1 Journal of Neuroscience, 2010, 30, 1233-1237.	1.7	43
59	Dissociation Between Memory Accuracy and Memory Confidence Following Bilateral Parietal Lesions. Cerebral Cortex, 2010, 20, 479-485.	1.6	204
60	Illusions and delusions: relating experimentally-induced false memories to anomalous experiences and ideas. Frontiers in Behavioral Neuroscience, 2009, 3, 53.	1.0	37
61	Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention Journal of Experimental Psychology: General, 2009, 138, 161-176.	1.5	156
62	Is the parietal lobe necessary for recollection in humans?. Neuropsychologia, 2008, 46, 1185-1191.	0.7	105
63	Distinct roles for lateral and medial rostral prefrontal cortex in source monitoring of perceived and imagined events. Neuropsychologia, 2008, 46, 1442-1453.	0.7	85
64	Parietal contributions to recollection: Electrophysiological evidence from aging and patients with parietal lesions. Neuropsychologia, 2008, 46, 1800-1812.	0.7	102
65	What is the parietal lobe contribution to human memory?. Neuropsychologia, 2008, 46, 1739-1742.	0.7	19
66	Separable Forms of Reality Monitoring Supported by Anterior Prefrontal Cortex. Journal of Cognitive Neuroscience, 2008, 20, 447-457.	1.1	109
67	Distinct regions of medial rostral prefrontal cortex supporting social and nonsocial functions. Social Cognitive and Affective Neuroscience, 2007, 2, 217-226.	1.5	108
68	Why Life Speeds Up As You Get Older: How Memory Shapes Our Past. By D. Draaisma. (Pp. 277; £12.99;) Tj E	.TQq0.0 0 r	gBT/Overlock
69	Memory for the September 11, 2001, Terrorist Attacks one Year Later in Patients with Alzheimer's Disease, Patients with Mild Cognitive Impairment, and Healthy Older Adults. Cortex, 2007, 43, 875-888.	1.1	36
70	Discriminating imagined from perceived information engages brain areas implicated in schizophrenia. Neurolmage, 2006, 32, 696-703.	2.1	83
71	Differential components of prospective memory?Evidence from fMRI. Neuropsychologia, 2006, 44, 1388-1397.	0.7	248
72	Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-analysis. Journal of Cognitive Neuroscience, 2006, 18, 932-948.	1.1	618

#	Article	IF	CITATIONS
73	Performance-related activity in medial rostral prefrontal cortex (area 10) during low-demand tasks Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 45-58.	0.7	102
74	Failing to Get the Gist: Reduced False Recognition of Semantic Associates in Semantic Dementia Neuropsychology, 2005, 19, 353-361.	1.0	38
75	Anterior prefrontal cortex and the recollection of contextual information. Neuropsychologia, 2005, 43, 1774-1783.	0.7	112
76	Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: the effects of levels of processing at encoding and of the subsequent retrieval task. Psychopharmacology, 2005, 181, 445-457.	1.5	55
77	Distinct Roles for Lateral and Medial Anterior Prefrontal Cortex in Contextual Recollection. Journal of Neurophysiology, 2005, 94, 813-820.	0.9	113
78	Differential Functions of Lateral and Medial Rostral Prefrontal Cortex (Area 10) Revealed by Brain-Behavior Associations. Cerebral Cortex, 2005, 16, 1783-1789.	1.6	99
79	Graded recall success: an event-related fMRI comparison of tip of the tongue and feeling of knowing. NeuroImage, 2005, 24, 1130-1138.	2.1	120
80	The gateway hypothesis of rostral prefrontal cortex (area 10) function. , 2005, , 217-248.		63
81	fMRI Evidence for Separable and Lateralized Prefrontal Memory Monitoring Processes. Journal of Cognitive Neuroscience, 2004, 16, 908-920.	1.1	87
82	Specific- and Partial-Source Memory: Effects of Aging Psychology and Aging, 2004, 19, 689-694.	1.4	56
83	Memory and Emotions for the September 11, 2001, Terrorist Attacks in Patients With Alzheimer's Disease, Patients With Mild Cognitive Impairment, and Healthy Older Adults Neuropsychology, 2004, 18, 315-327.	1.0	67
84	Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 2003, 4, 637-648.	4.9	825
85	Feeling-of-knowing in episodic memory: an event-related fMRI study. NeuroImage, 2003, 18, 827-836.	2.1	117
86	Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neurolmage, 2003, 19, 613-626.	2.1	200
87	Recollection-based memory in frontotemporal dementia: implications for theories of long-term memory. Brain, 2002, 125, 2523-2536.	3.7	83
88	Regional brain activations differ for semantic features but not categories. NeuroReport, 2002, 13, 1497-1501.	0.6	20
89	Memory consolidation and the hippocampus: further evidence from studies of autobiographical memory in semantic dementia and frontal variant frontotemporal dementia. Neuropsychologia, 2002, 40, 633-654.	0.7	107
90	Perceptual and semantic contributions to episodic memory: evidence from semantic dementia and Alzheimer's disease. Journal of Memory and Language, 2002, 47, 197-213.	1.1	34

#	Article	IF	CITATIONS
91	Semantic knowledge and episodic memory for faces in semantic dementia Neuropsychology, 2001, 15, 101-114.	1.0	86
92	Perceptual and Semantic Components of Memory for Objects and Faces: A PET Study. Journal of Cognitive Neuroscience, 2001, 13, 430-443.	1.1	40
93	Insights from semantic dementia on the relationship between episodic and semantic memory. Neuropsychologia, 2000, 38, 313-324.	0.7	166
94	What does semantic dementia reveal about the functional role of the perirhinal cortex?. Trends in Cognitive Sciences, 1999, 3, 248-249.	4.0	16