Xianxing Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988305/publications.pdf

Version: 2024-02-01

279798 189892 2,523 48 23 50 citations h-index g-index papers 54 54 54 2256 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction. Chemical Reviews, 2013, 113, 5515-5546.	47.7	465
2	A Unique Approach to the Concise Synthesis of Highly Optically Active Spirooxazolines and the Discovery of a More Potent Oxindole-Type Phytoalexin Analogue. Journal of the American Chemical Society, 2010, 132, 15328-15333.	13.7	281
3	Highly Enantioselective Synthesis of \hat{I}^3 -Nitro Heteroaromatic Ketones in a Doubly Stereocontrolled Manner Catalyzed by Bifunctional Thiourea Catalysts Based on Dehydroabietic Amine: A Doubly Stereocontrolled Approach to Pyrrolidine Carboxylic Acids. Organic Letters, 2009, 11, 153-156.	4.6	118
4	Core Scaffoldâ€Inspired Concise Synthesis of Chiral Spirooxindoleâ€Pyranopyrimidines with Broadâ€Spectrum Anticancer Potency. Advanced Synthesis and Catalysis, 2012, 354, 917-925.	4.3	104
5	Bifunctional Organocatalytic Strategy for Inverseâ€Electronâ€Demand Diels–Alder Reactions: Highly Efficient Inâ€Situ Substrate Generation and Activation to Construct Azaspirocyclic Skeletons. Angewandte Chemie - International Edition, 2012, 51, 2084-2087.	13.8	91
6	Enantio- and Diastereoselective Asymmetric Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes in a Doubly Stereocontrolled Manner Catalyzed by Bifunctional Rosin-Derived Amine Thiourea Catalysts. Journal of Organic Chemistry, 2009, 74, 5562-5567.	3.2	90
7	Asymmetric Aza-Mannich Addition of Oxazolones to N-Tosyl Aldimines: Synthesis of Chiral \hat{l}_{\pm} -Disubstituted \hat{l}_{\pm} , \hat{l}^2 -Diamino Acids. Organic Letters, 2010, 12, 876-879.	4.6	88
8	Catalytic Asymmetric β,γâ€Activation of α,βâ€Unsaturated γâ€Butyrolactams: Direct Approach to β,γâ€Fun Dihydropyranopyrrolidinâ€2â€ones. Angewandte Chemie - International Edition, 2013, 52, 11329-11333.	ctionalized	81
9	AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis. Nature Communications, 2020, 11, 5807.	12.8	67
10	Catalytic Asymmetric [4 + 3] Annulation of $\langle i \rangle C \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Cyclic Azomethine Imines with Copper Allenylidenes. Organic Letters, 2018, 20, 6506-6510.	4.6	63
11	Doubly Stereocontrolled Asymmetric Azaâ∈Henry Reaction with ⟨i⟩in situ⟨/i⟩ Generation of ⟨i⟩N⟨/i⟩â∈Bocâ∈Imines Catalyzed by Novel Rosinâ∈Derived Amine Thiourea Catalysts. Advanced Synthesis and Catalysis, 2009, 351, 2096-2100.	4.3	62
12	Direct Organocatalytic Asymmetric Aldol Reaction of α-Isothiocyanato Imides to α-Ketoesters under Low Ligand Loading: A Doubly Stereocontrolled Approach to Cyclic Thiocarbamates Bearing Chiral Quaternary Stereocenters. Organic Letters, 2010, 12, 1544-1547.	4.6	57
13	Asymmetric Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reaction for the Construction of Bicyclic Skeletons with Multiple Stereocenters by Using a Bifunctional Organocatalytic Strategy: An Efficient Approach to Chiral Macrolides. Chemistry - A European Journal, 2012, 18, 11465-11473.	3.3	47
14	PPh3-catalyzed synthesis of dicyano-2-methylenebut-3-enoates as efficient dienes in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chemical Communications, 2011, 47, 8289.	4.1	46
15	Mg ^{II} â€Mediated Catalytic Asymmetric Dearomatization (CADA) Reaction of βâ€Naphthols with Dialkyl Acetylenedicarboxylates. Chemistry - A European Journal, 2016, 22, 8483-8487.	3.3	40
16	Diastereodivergent construction of bispiro[oxindole-bi-pyrrolidine]s with four consecutive stereocenters <i>via</i> esymmetric [3 + 2] cycloaddition of 2,3-dioxopyrrolidines using identical catalysts. Organic Chemistry Frontiers, 2019, 6, 1989-1995.	4. 5	38
17	Highly diastereo- and enantioselective Mannich reaction of lactones with N-Boc-aldimines catalyzed by bifunctional rosin-derived amine thiourea catalysts. Chemical Communications, 2010, 46, 4294.	4.1	37
18	Synthesis of Benzofused $\langle i \rangle N \langle i \rangle$ -Heterocycles via Rh(III)-Catalyzed Direct Benzannulation with 1,3-Dienes. ACS Catalysis, 2019, 9, 556-564.	11.2	37

#	Article	IF	CITATIONS
19	Heterogeneous Bifunctional Catalytic, Chemoâ€, Regio†and Enantioselective Cascade Inverse Electron Demand Diels†Alder Reaction. Advanced Synthesis and Catalysis, 2013, 355, 308-314.	4.3	30
20	Enantioselective Synthesis of Cyclic Thioureas <i>via</i> Mannich Reaction and Concise Synthesis of Highly Optically Active Methylthioimidazolines: Discovery of a More Potent Antipyretic Agent. Advanced Synthesis and Catalysis, 2011, 353, 1787-1796.	4.3	29
21	Catalytic asymmetric nucleophilic fluorination using BF3·Et2O as fluorine source and activating reagent. Nature Communications, 2021, 12, 3957.	12.8	27
22	Asymmetric Addition of Terminal Alkynes to <i>N</i> â€(Diphenylphosphinoyl)imines Promoted by Stoichiometric Amounts of a Prolineâ€Derived βâ€Amino Alcohol. European Journal of Organic Chemistry, 2009, 2009, 3790-3794.	2.4	25
23	Diastereoselective Synthesis of Biheterocyclic Tetrahydrothiophene Derivatives via Base-Catalyzed Cascade Michael-Aldol $[3+2]$ Annulation of 1,4-Dithiane-2,5-diol with Maleimides. Journal of Organic Chemistry, 2015, 80, 6870-6874.	3.2	24
24	Mg ^{II} â€Catalyzed Desymmetrization Reaction of <i>meso</i> êAziridines with Hydroxylamines: Synthesis of Novel Chiral 1,2â€Diamine Skeletons. Chemistry - A European Journal, 2016, 22, 17141-17144.	3.3	20
25	Metal-free fluoroalkylfluoroalkylselenolation of unactivated alkenes: incorporation of two photoinduced processes. Green Chemistry, 2020, 22, 4878-4883.	9.0	20
26	Highly Enantioselective Synthesis of Nâ€Protected βâ€Amino Malonates Catalyzed by Magnetically Separable Heterogeneous Rosinâ€Derived Amino Thiourea Catalysts: A Stereocontrolled Approach to βâ€Amino Acids. ChemCatChem, 2013, 5, 2187-2190.	3.7	18
27	Highly diastereoselective oxa-[3+3] cyclization with C,N-cyclic azomethine imines <i>via</i> the copper-catalyzed aerobic oxygenated Cî€C bond of indoles. Chemical Communications, 2018, 54, 2353-2356.	4.1	18
28	Potent effects of amino acid scanned antimicrobial peptide Feleucin-K3 analogs against both multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Amino Acids, 2018, 50, 1471-1483.	2.7	18
29	Anti-cancer small molecule JP-8g exhibits potent in vivo anti-inflammatory activity. Scientific Reports, 2014, 4, 4372.	3.3	16
30	Organohalogeniteâ€Catalyzed Spiroketalization: Enantioselective Synthesis of Bisbenzannulated Spiroketal Cores. Advanced Synthesis and Catalysis, 2016, 358, 370-374.	4.3	16
31	Trapping of Zwitterionic Intermediates by Isatins and Imines: Synthesis of Benzoxazines Bearing a C4-Quaternary Stereocenter. Organic Letters, 2019, 21, 4014-4018.	4.6	16
32	Phosphine-Catalyzed Enantioselective [4 + 2] Cycloaddition–Semipinacol-Type-Rearrangement Reaction of Morita–Baylis–Hillman Carbonates. Organic Letters, 2018, 20, 4250-4254.	4.6	15
33	Rhodium-Catalyzed Formal C–O Insertion in Carbene/Alkyne Metathesis Reactions: Synthesis of 3-Substituted 3 <i>H</i> -Indol-3-ols. Organic Letters, 2019, 21, 4322-4326.	4.6	13
34	RAP-8 ameliorates liver fibrosis by modulating cell cycle and oxidative stress. Life Sciences, 2019, 229, 200-209.	4.3	13
35	Rapeseed Protein-Derived Antioxidant Peptide RAP Ameliorates Nonalcoholic Steatohepatitis and Related Metabolic Disorders in Mice. Molecular Pharmaceutics, 2019, 16, 371-381.	4.6	13
36	Protein labeling approach to improve lysosomal targeting and efficacy of antibody–drug conjugates. Organic and Biomolecular Chemistry, 2020, 18, 3229-3233.	2.8	13

#	ARTICLE	IF	CITATIONS
37	Photoactivatable Fluorogenic Labeling via Turnâ€On "Clickâ€Like―Nitrosoâ€Diene Bioorthogonal Reaction. Advanced Science, 2019, 6, 1802039.	11.2	12
38	Development of a Broadly Applicable Cas12a-Linked Beam Unlocking Reaction for Sensitive and Specific Detection of Respiratory Pathogens Including SARS-CoV-2. ACS Chemical Biology, 2021, 16, 491-500.	3.4	12
39	Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis. Acta Pharmaceutica Sinica B, 2022, 12, 2443-2461.	12.0	12
40	Organocatalytic asymmetric $[3 + 2]$ annulation of 1,4-dithiane-2,5-diol with azlactones: access to chiral dihydrothiophen-2(3 <i>H</i>)-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2040-2044.	4.5	10
41	Highly efficient regio-selective ring-opening nucleophilic fluorination of aziridines and azetidines: access to \hat{l}^2 - or \hat{l}^3 -fluorinated amino acid derivatives. Organic and Biomolecular Chemistry, 2019, 17, 3797-3804.	2.8	10
42	Suzuki Crossâ€Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry - A European Journal, 2020, 26, 15938-15943.	3.3	8
43	Site-specific labeling of an anti-MUC1 antibody: probing the effects of conjugation and linker chemistry on the internalization process. RSC Advances, 2019, 9, 1909-1917.	3.6	7
44	Triphenylphosphineâ€Catalyzed Diastereoselective Addition of Oxazolones to Isatinâ€Derived Ketimines: Construction of Vicinal Nâ€Substituted Quaternary Stereocenters. Asian Journal of Organic Chemistry, 2019, 8, 492-495.	2.7	7
45	Visibleâ€Lightâ€Driven Redox Neutral Direct Câ^'H Amination of Glycine Derivatives and Peptides with N â€Acyloxyphthalimides. Chemistry - A European Journal, 2021, 27, 12540-12544.	3.3	5
46	A CDR-based approach to generate covalent inhibitory antibody for human rhinovirus protease. Bioorganic and Medicinal Chemistry, 2021, 42, 116219.	3.0	5
47	Nucleophilic construction of sulfate bonds: simplified access to polysulfates and polysulfonates. Reaction Chemistry and Engineering, 2019, 4, 2074-2080.	3.7	4
48	Direct \hat{l}^2 -selectivity of $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l}^3 -butyrolactam for asymmetric conjugate additions in an organocatalytic manner. RSC Advances, 2018, 8, 28874-28878.	3.6	3