Hongqiang Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988237/publications.pdf

Version: 2024-02-01

		304743	345221
52	1,442	22	36
papers	citations	h-index	g-index
55	55	55	1281
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Efficient Extraction of Serum Peptides by Ordered Mesoporous Carbon. Angewandte Chemie - International Edition, 2011, 50, 12218-12221.	13.8	118
2	A poly(ethylene glycol)-brush decorated magnetic polymer for highly specific enrichment of phosphopeptides. Chemical Science, 2012, 3, 2828.	7.4	95
3	Dual-Metal Centered Zirconium–Organic Framework: A Metal-Affinity Probe for Highly Specific Interaction with Phosphopeptides. ACS Applied Materials & Therfaces, 2016, 8, 35012-35020.	8.0	77
4	Size-Selective Enrichment of N-Linked Glycans Using Highly Ordered Mesoporous Carbon Material and Detection by MALDI-TOF MS. Analytical Chemistry, 2011, 83, 7721-7728.	6.5	72
5	One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides. Analytica Chimica Acta, 2014, 841, 99-105.	5.4	72
6	Interaction of IncRNA MIR100HG with hnRNPA2B1 facilitates m6A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Molecular Cancer, 2022, 21, 74.	19.2	69
7	Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Analytica Chimica Acta, 2014, 809, 61-68.	5.4	62
8	Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. Plant Physiology and Biochemistry, 2020, 149, 301-312.	5. 8	50
9	Facile preparation of ordered mesoporous silica–carbon composite nanoparticles for glycan enrichment. Chemical Communications, 2013, 49, 5162.	4.1	49
10	In-Depth Analysis of Glycoprotein Sialylation in Serum Using a Dual-Functional Material with Superior Hydrophilicity and Switchable Surface Charge. Analytical Chemistry, 2017, 89, 3966-3972.	6.5	48
11	Recent advances in methods for the analysis of protein oâ€glycosylation at proteome level. Journal of Separation Science, 2018, 41, 248-261.	2.5	44
12	Functional Nanochannels for Sensing Tyrosine Phosphorylation. Journal of the American Chemical Society, 2020, 142, 16324-16333.	13.7	42
13	Highly Efficient Release of Glycopeptides from Hydrazide Beads by Hydroxylamine Assisted PNGase F Deglycosylation for N-Glycoproteome Analysis. Analytical Chemistry, 2015, 87, 10199-10204.	6.5	41
14	Characterization of site-specific glycosylation of secreted proteins associated with multi-drug resistance of gastric cancer. Oncotarget, 2016, 7, 25315-25327.	1.8	40
15	Phosphoric acid functionalized mesoporous organo-silica (EPO) as the adsorbent for in situ enrichment and isotope labeling of endogenous phosphopeptides. Chemical Communications, 2012, 48, 961-963.	4.1	38
16	Proteomics Analysis of O-GalNAc Glycosylation in Human Serum by an Integrated Strategy. Analytical Chemistry, 2017, 89, 1469-1476.	6.5	38
17	Isobaric cross-sequence labeling of peptides by using site-selective N-terminus dimethylation. Chemical Communications, 2012, 48, 6265.	4.1	34
18	Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nature Communications, 2022, 13, 1900.	12.8	34

#	Article	IF	CITATIONS
19	A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method. Scientific Reports, 2015, 5, 10164.	3.3	32
20	An overview on enrichment methods for cell surface proteome profiling. Journal of Separation Science, 2020, 43, 292-312.	2.5	31
21	A New Searching Strategy for the Identification of O-Linked Glycopeptides. Analytical Chemistry, 2019, 91, 3852-3859.	6.5	30
22	Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis. Analytical Chemistry, 2017, 89, 9307-9314.	6.5	27
23	Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer. Cell Death and Differentiation, 2022, 29, 2247-2261.	11.2	24
24	Chemoenzymatic Approach for the Proteomics Analysis of Mucin-Type Core-1 O-Glycosylation in Human Serum. Analytical Chemistry, 2018, 90, 12714-12722.	6.5	19
25	Proteomics analysis of site-specific glycoforms by a virtual multistage mass spectrometry method. Analytica Chimica Acta, 2019, 1070, 60-68.	5.4	19
26	Highly Efficient Enrichment of $\langle i \rangle O \langle i \rangle$ -GlcNAc Glycopeptides Based on Chemical Oxidation and Reversible Hydrazide Chemistry. Analytical Chemistry, 2021, 93, 16618-16627.	6.5	18
27	Highly Efficient Analysis of Glycoprotein Sialylation in Human Serum by Simultaneous Quantification of Glycosites and Site-Specific Glycoforms. Journal of Proteome Research, 2019, 18, 3439-3446.	3.7	16
28	Automated Intact Glycopeptide Enrichment Method Facilitating Highly Reproducible Analysis of Serum Site-Specific N-Glycoproteome. Analytical Chemistry, 2021, 93, 7473-7480.	6.5	15
29	Amine Chemistry Method for Selective Enrichment of N-Linked Glycopeptides for Glycoproteomics Analysis. Journal of Proteome Research, 2015, 14, 3892-3899.	3.7	13
30	Glycoproteomics Analysis Reveals Differential Expression of Site-Specific Glycosylation in Human Milk Whey during Lactation. Journal of Agricultural and Food Chemistry, 2021, 69, 6690-6700.	5.2	13
31	Specific Enrichment of Peptides with N-Terminal Serine/Threonine by a Solid-Phase Capture-Release Approach for Efficient Proteomics Analysis. Analytical Chemistry, 2015, 87, 11353-11360.	6.5	12
32	Selective Enrichment of Cysteine-Containing Phosphopeptides for Subphosphoproteome Analysis. Journal of Proteome Research, 2015, 14, 5341-5347.	3.7	12
33	Diverse protein manipulations with genetically encoded glutamic acid benzyl ester. Chemical Science, 2021, 12, 9778-9785.	7.4	12
34	Highly Efficient Enrichment of O-GalNAc Glycopeptides by Using Immobilized Metal Ion Affinity Chromatography. Analytical Chemistry, 2021, 93, 7579-7587.	6.5	12
35	A CGA/EGFR/GATA2 positive feedback circuit confers chemoresistance in gastric cancer. Journal of Clinical Investigation, 2022, 132, .	8.2	12
36	Profiling of Endogenously Intact N-Linked and O-Linked Glycopeptides from Human Serum Using an Integrated Platform. Journal of Proteome Research, 2020, 19, 1423-1434.	3.7	10

#	Article	IF	CITATIONS
37	Highly Efficient Identification of Oâ€GalNAc Glycosylation by an Acidâ€Assisted Glycoform Simplification Approach. Proteomics, 2018, 18, e1800042.	2.2	9
38	Analysis of therapeutic monoclonal antibody glycoforms by mass spectrometry for pharmacokinetics study. Talanta, 2017, 165, 664-670.	5 . 5	8
39	Caffeic acid phenethyl ester (CAPE) revisited: Covalent modulation of XPO1/CRM1 activities and implication for its mechanism of action. Chemical Biology and Drug Design, 2017, 89, 655-662.	3.2	8
40	Imine-linked conjugated organic polymer bearing bis(imino)pyridine ligands and its catalytic application in C–C coupling reactions. Chinese Journal of Catalysis, 2014, 35, 540-545.	14.0	7
41	MS-Decipher: a user-friendly proteome database search software with an emphasis on deciphering the spectra of O-linked glycopeptides. Bioinformatics, 2022, 38, 1911-1919.	4.1	6
42	Endoâ€M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for <i>O</i> â€GlcNAcylation Analysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
43	High specific phosphopeptides enrichment by titanium silicalite with post-treatment of desilication. Analytical Methods, 2013, 5, 2939.	2.7	5
44	Highly Efficient Separation of Methylated Peptides Utilizing Selective Complexation between Lysine and 18-Crown-6. Analytical Chemistry, 2020, 92, 15663-15670.	6.5	5
45	Multi-histidine functionalized material for the specific enrichment of sialylated glycopeptides. Journal of Chromatography A, 2020, 1627, 461422.	3.7	5
46	Sirtuinâ€Derived Covalent Binder for the Selective Recognition of Protein Crotonylation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
47	A Mass-Spectrometry-Based Antibody-Free Approach Enables the Quantification of D-Dimer in Plasma. Journal of Proteome Research, 2020, 19, 3143-3152.	3.7	3
48	Mirror-Cutting-Based Digestion Strategy Enables the <i>In-Depth</i> and Accuracy Characterization of N-Linked Protein Glycosylation. Journal of Proteome Research, 2021, 20, 4948-4958.	3.7	2
49	Toward an Orthogonal Protein Lysine Acylation and Deacylation System. ChemBioChem, 2022, 23, e202100551.	2.6	2
50	Chemical Depletion of Histidine-Containing Peptides Allows Identification of More Low-Abundance Methylation Sites from Proteome Samples. Journal of Proteome Research, 2021, 20, 2497-2505.	3.7	1
51	Endoâ \in M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for <i>O</i> a \in GlcNAcylation Analysis. Angewandte Chemie, 0, , .	2.0	0
52	Sirtuinâ€Derived Covalent Binder for the Selective Recognition of Protein Crotonylation. Angewandte Chemie, 0, , .	2.0	0