
Ju-Won Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988018/publications.pdf

Version: 2024-02-01

IU-MON LEON

#	Article	IF	CITATIONS
1	Selfâ€Healable Organic–Inorganic Hybrid Thermoelectric Materials with Excellent Ionic Thermoelectric Properties. Advanced Energy Materials, 2022, 12, .	10.2	43
2	Selfâ€Healable and Stretchable Ionicâ€Liquidâ€Based Thermoelectric Composites with High Ionic Seebeck Coefficient. Small, 2022, 18, e2106937.	5.2	29
3	Recovery of Electrochemical Properties of Polyaniline-Based Multilayer Films with Improved Electrochemical Stability. ACS Applied Polymer Materials, 2022, 4, 4850-4859.	2.0	8
4	Enhanced Chemical and Electrochemical Stability of Polyaniline-Based Layer-by-Layer Films. Polymers, 2021, 13, 2992.	2.0	13
5	Three-dimensional porous graphene anodes for sodium-ion batteries. Functional Materials Letters, 2020, 13, 1951009.	0.7	11
6	Molecular Engineering in Hole Transport Ï€â€Conjugated Polymers to Enable High Efficiency Colloidal Quantum Dot Solar Cells. Advanced Energy Materials, 2020, 10, 1902933.	10.2	36
7	Water-processable, sprayable LiFePO4/graphene hybrid cathodes for high-power lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2020, 84, 72-81.	2.9	22
8	Quantum Dot Solar Cells: Molecular Engineering in Hole Transport π onjugated Polymers to Enable High Efficiency Colloidal Quantum Dot Solar Cells (Adv. Energy Mater. 8/2020). Advanced Energy Materials, 2020, 10, 2070035.	10.2	2
9	Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect. Energy and Environmental Science, 2020, 13, 2915-2923.	15.6	113
10	Pump-Free Glass-Based Capillary Microfluidic Immuno-Assay Chip for Electrochemical Detection of Prostate-Specific Antigen. Journal of Nanoscience and Nanotechnology, 2020, 20, 4629-4633.	0.9	5
11	Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics, 2019, 123, 167-177.	5.3	274
12	Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Advanced Composites and Hybrid Materials, 2019, 2, 711-719.	9.9	34
13	Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Applied Materials & Interfaces, 2019, 11, 20453-20464.	4.0	98
14	Detection of thioredoxin-1 using ultra-sensitive ELISA with enzyme-encapsulated human serum albumin nanoparticle. Nano Convergence, 2019, 6, 37.	6.3	9
15	Electrochromic tuning of transparent gold nanorods with poly[(3,4-propylenedioxy)pyrrole] shells in the near-infrared region. Journal of Materials Chemistry C, 2017, 5, 12571-12584.	2.7	15
16	Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates. Chemistry of Materials, 2016, 28, 2868-2881.	3.2	67
17	Design of Hybrid Electrochromic Materials with Large Electrical Modulation of Plasmonic Resonances. ACS Applied Materials & Interfaces, 2016, 8, 13064-13075.	4.0	37
18	The effect of plasmon resonance coupling in P3HT-coated silver nanodisk monolayers on their optical sensitivity. Journal of Materials Chemistry C, 2016, 4, 9813-9822.	2.7	10

Ju-Won Jeon

#	Article	IF	CITATIONS
19	Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with pH-Sensitive and Electroactive Polymer Shells. Chemistry of Materials, 2016, 28, 7551-7563.	3.2	48
20	Controlling Porosity in Ligninâ€Derived Nanoporous Carbon for Supercapacitor Applications. ChemSusChem, 2015, 8, 411-411.	3.6	7
21	Sprayable, paintable layer-by-layer polyaniline nanofiber/graphene electrodes. RSC Advances, 2015, 5, 14994-15001.	1.7	29
22	Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 178, 287-293.	2.6	50
23	Spray-On Polyaniline/Poly(acrylic acid) Electrodes with Enhanced Electrochemical Stability. ACS Applied Materials & Interfaces, 2015, 7, 24150-24158.	4.0	29
24	Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 3757-3767.	5.2	72
25	Controlling Porosity in Ligninâ€Derived Nanoporous Carbon for Supercapacitor Applications. ChemSusChem, 2015, 8, 428-432.	3.6	196
26	Charge Storage in Decyl- and 3,6,9-Trioxadecyl-Substituted Poly(dithieno[3,2- <i>b</i> :2,3- <i>d</i>]pyrrole) Electrodes. Macromolecules, 2014, 47, 79-88.	2.2	26
27	Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage. Journal of Materials Chemistry A, 2014, 2, 14421-14428.	5.2	30
28	In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 7214-7222.	4.0	306
29	Charge Storage in Polymer Acid-Doped Polyaniline-Based Layer-by-Layer Electrodes. ACS Applied Materials & Interfaces, 2013, 5, 10127-10136.	4.0	63
30	Porous polyaniline nanofiber/vanadium pentoxide layer-by-layer electrodes for energy storage. Journal of Materials Chemistry A, 2013, 1, 7648.	5.2	46
31	Electric Field Induced Morphological Transitions in Polyelectrolyte Multilayers. ACS Applied Materials & Interfaces, 2013, 5, 4930-4936.	4.0	37
32	Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage. Physical Chemistry Chemical Physics, 2013, 15, 9654.	1.3	82
33	Polyaniline/Vanadium Pentoxide Layer-by-Layer Electrodes for Energy Storage. Chemistry of Materials, 2012, 24, 181-189.	3.2	97
34	Continuous one-step synthesis of N-doped titania under supercritical and subcritical water conditions for photocatalytic reaction under visible light. Journal of Physics and Chemistry of Solids, 2010, 71, 608-611.	1.9	8