
Sicong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987908/publications.pdf Version: 2024-02-01

SICONC LIU

#	Article	IF	CITATIONS
1	Nonlinear optical properties and passively Q-switched laser application of a layered molybdenum carbide at 639 nm. Optics Letters, 2022, 47, 1830.	3.3	5
2	Molybdenum Carbide Buried in D-Shaped Fibers as a Novel Saturable Absorber Device for Ultrafast Photonics Applications. ACS Applied Materials & Interfaces, 2021, 13, 19128-19137.	8.0	17
3	Ultrafast photonics applications of zirconium carbide as a novel mode-locker for fiber lasers. Journal of Materials Chemistry C, 2021, 9, 16985-16990.	5.5	10
4	Magnetron-sputtering deposited molybdenum carbide MXene thin films as a saturable absorber for passively Q-switched lasers. Journal of Materials Chemistry C, 2020, 8, 1608-1613.	5.5	40
5	\$1.34~mu\$ m Q-Switched Nd:YVO ₄ Laser Based on Perovskite Film Saturable Absorber. IEEE Photonics Technology Letters, 2020, 32, 3-6.	2.5	8
6	Molybdenum Disulfide Film Saturable Absorber Based on Sol–Gel Glass and Spin-Coating Used in High-Power Q-Switched Nd:YAG Laser. ACS Applied Materials & Interfaces, 2020, 12, 9404-9408.	8.0	15
7	Nonlinear Optical Response of Reflective MXene Molybdenum Carbide Films as Saturable Absorbers. Nanomaterials, 2020, 10, 2391.	4.1	10
8	High-Power Passively Q-Switched Nd:YVO4 Laser Based on WS2 Saturable Absorber. IEEE Photonics Technology Letters, 2020, 32, 831-834.	2.5	2
9	Passively Mode-Locked Fiber Laser with WS ₂ /SiO ₂ Saturable Absorber Fabricated by Sol–Gel Technique. ACS Applied Materials & Interfaces, 2020, 12, 29625-29630.	8.0	15
10	2D molybdenum carbide (Mo ₂ C)/fluorine mica (FM) saturable absorber for passively mode-locked erbium-doped all-fiber laser. Nanophotonics, 2020, 9, 2523-2530.	6.0	24
11	Mode-Locked Er-Doped Fiber Laser by Using MoS2/SiO2 Saturable Absorber. Nanoscale Research Letters, 2019, 14, 59.	5.7	10
12	Er-Doped Q-Switched Fiber Laser Based on MoS2-SAM Fabricated by Langmuir-Blodgett (LB) Technique. IEEE Photonics Technology Letters, 2019, 31, 1167-1170.	2.5	1
13	Reflective Langmuir–Blodgett Molybdenum Disulfide Saturable Absorber for Q-Switched Nd:GdVO4 Laser. IEEE Photonics Technology Letters, 2019, 31, 333-336.	2.5	0
14	Optical properties and applications of molybdenum disulfide/SiO ₂ saturable absorber fabricated by sol-gel technique. Optics Express, 2019, 27, 6348.	3.4	22
15	Soliton and bound-state soliton mode-locked fiber laser based on a MoS ₂ /fluorine mica Langmuir–Blodgett film saturable absorber. Photonics Research, 2019, 7, 431.	7.0	37
16	Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles. Optics and Laser Technology, 2018, 103, 354-358.	4.6	25
17	Application prospects of boron nitride as a novel saturable absorber deviceÂfor ultrashort pulse generation in fiber lasers. Journal of Materials Chemistry C, 0, , .	5.5	7