List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-pot synthesis of CrαMnβCeTiOx mixed oxides as NH3-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance. Chemical Engineering Science, 2022, 251, 117450.	3.8	19
2	Experimental and in situ DRIFTs studies on confined metallic copper stabilized Pd species for enhanced CO2 reduction to formate. Applied Catalysis B: Environmental, 2022, 309, 121239.	20.2	17
3	Ni-Ni ₃ P/SiO ₂ Catalyst for Highly Selective Production of Silicon Tetrachloride via Silicon Hydrochlorination. Industrial & Engineering Chemistry Research, 2022, 61, 5066-5079.	3.7	4
4	Structural Evolution and Underlying Mechanism of Single-Atom Centers on Mo2C(100) Support during Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 17075-17084.	8.0	4
5	Progress of Nonpreciousâ€Metalâ€Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials, 2021, 33, e2003786.	21.0	166
6	Selective catalytic reduction of NOx in marine engine exhaust gas over supported transition metal oxide catalysts. Chemical Engineering Journal, 2021, 414, 128794.	12.7	23
7	Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nature Communications, 2021, 12, 4088.	12.8	259
8	Promotion Effect of Chromium on the Activity and SO ₂ Resistance of CeO ₂ –TiO ₂ Catalysts for the NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 11676-11688.	3.7	18
9	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie - International Edition, 2020, 59, 798-803.	13.8	315
10	Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst. Angewandte Chemie, 2020, 132, 808-813.	2.0	33
11	Innentitelbild: Elucidating the Electrocatalytic CO ₂ Reduction Reaction over a Model Singleâ€Atom Nickel Catalyst (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 518-518.	2.0	1
12	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Science Advances, 2020, 6, .	10.3	214
13	Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nature Communications, 2020, 11, 4246.	12.8	221
14	Amorphous Multimetal Alloy Oxygen Evolving Catalysts. , 2020, 2, 624-632.		45
15	Rational Design of an Iridium–Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 25991-26001.	8.0	36
16	Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. Nano Letters, 2020, 20, 4278-4285.	9.1	201
17	Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface. Chinese Journal of Catalysis, 2020, 41, 1873-1883.	14.0	57
18	Metal organic frameworks for adsorption-based separation of fluorocompounds: a review. Materials Advances, 2020, 1, 310-320.	5.4	53

#	Article	IF	CITATIONS
19	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129
20	Design of hierarchical, threeâ€dimensional freeâ€standing singleâ€atom electrode for H ₂ O ₂ production in acidic media. , 2020, 2, 276-282.		56
21	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	11.7	418
22	Self-assembly of three-dimensional CdS nanosphere/graphene networks for efficient photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2019, 31, 34-38.	12.9	35
23	Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1903909.	21.0	345
24	Bifunctional N-CoSe ₂ /3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn–Air Battery. , 2019, 1, 432-439.		90
25	Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. Journal of the American Chemical Society, 2019, 141, 3014-3023.	13.7	337
26	Expedient synthesis of <i>E</i> -hydrazone esters and 1 <i>H</i> -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	10.3	31
27	Fluorocarbon Separation in a Thermally Robust Zirconium Carboxylate Metal–Organic Framework. Chemistry - an Asian Journal, 2018, 13, 977-981.	3.3	16
28	Identifying Active Sites of Nitrogenâ€Doped Carbon Materials for the CO ₂ Reduction Reaction. Advanced Functional Materials, 2018, 28, 1800499.	14.9	244
29	An Earthâ€Abundant Catalystâ€Based Seawater Photoelectrolysis System with 17.9% Solarâ€ŧoâ€Hydrogen Efficiency. Advanced Materials, 2018, 30, e1707261.	21.0	189
30	Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3, 140-147.	39.5	1,594
31	Nitrogen and sulfur Co-doped graphene inlaid with cobalt clusters for efficient oxygen reduction reaction. Materials Today Energy, 2018, 10, 184-190.	4.7	24
32	A strategy to regenerate coked and sintered Ni/Al2O3 catalyst for methanation reaction. International Journal of Hydrogen Energy, 2018, 43, 20661-20670.	7.1	42
33	Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. Journal of the American Chemical Society, 2018, 140, 12469-12475.	13.7	1,044
34	Adsorption separation of R134a, R125, and R143a fluorocarbon mixtures using 13X and surface modified 5A zeolites. AICHE Journal, 2018, 64, 640-648.	3.6	19
35	Direct and selective hydrogenation of CO ₂ to ethylene and propene by bifunctional catalysts. Catalysis Science and Technology, 2017, 7, 5602-5607.	4.1	118
36	Controllable synthesis of α-MoC1-x and β-Mo2C nanowires for highly selective CO2 reduction to CO. Catalysis Communications, 2016, 84, 147-150.	3.3	66

#	Article	IF	CITATIONS
37	Sustainable hydrogen and chemical production via photo-electrochemical reforming of biomass-derived alcohols. Nano Research, 2016, 9, 3388-3393.	10.4	20
38	Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 9978-9985.	13.7	345
39	Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. Journal of Catalysis, 2016, 341, 82-90.	6.2	132
40	Adsorption Separation of Râ€22, Râ€32 and Râ€125 Fluorocarbons using 4A Molecular Sieve Zeolite. ChemistrySelect, 2016, 1, 3718-3722.	1.5	20
41	The thermodynamics analysis and experimental validation for complicated systems in CO 2 hydrogenation process. Journal of Energy Chemistry, 2016, 25, 1027-1037.	12.9	72
42	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	10.3	1,078
43	Ni–MnO _{<i>x</i>} Catalysts Supported on Al ₂ O ₃ -Modified Si Waste with Outstanding CO Methanation Catalytic Performance. Industrial & Engineering Chemistry Research, 2015, 54, 12516-12524.	3.7	29
44	One-pot synthesis of ordered mesoporous Ni–V–Al catalysts for CO methanation. Journal of Catalysis, 2015, 326, 127-138.	6.2	127
45	Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 2015, 5, 22759-22776.	3.6	411
46	Preparation of high-surface-area Ni/α-Al ₂ O ₃ catalysts for improved CO methanation. RSC Advances, 2015, 5, 7539-7546.	3.6	28
47	VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation. Fuel Processing Technology, 2015, 135, 34-46.	7.2	90
48	Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation. Journal of Energy Chemistry, 2014, 23, 761-770.	12.9	61
49	Highly active and stable Ni/γ-Al ₂ O ₃ catalysts selectively deposited with CeO ₂ for CO methanation. RSC Advances, 2014, 4, 16094-16103.	3.6	94
50	MnOx–CeO2 supported on a three-dimensional and networked SBA-15 monolith for NOx-assisted soot combustion. RSC Advances, 2014, 4, 14879.	3.6	41
51	Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catalysis Science and Technology, 2013, 3, 2009.	4.1	110
52	Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas. Chemical Engineering Journal, 2013, 219, 183-189.	12.7	69
53	Nickel catalysts supported on calcium titanate for enhanced CO methanation. Catalysis Science and Technology, 2013, 3, 490-499.	4.1	76
54	Ni/Al2O3 catalysts for CO methanation: Effect of Al2O3 supports calcined at different temperatures. Journal of Energy Chemistry, 2013, 22, 919-927.	12.9	105

#	Article	IF	CITATIONS
55	Template preparation of high-surface-area barium hexaaluminate as nickel catalyst support for improved CO methanation. RSC Advances, 2013, 3, 18156.	3.6	34
56	A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2012, 2, 2358.	3.6	619
57	Template-free synthesis of Cu@Cu2O core–shell microspheres and their application as copper-based catalysts for dimethyldichlorosilane synthesis. Chemical Engineering Journal, 2012, 211-212, 421-431.	12.7	32
58	Nanostructured trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC catalysts for methanol electrooxidation. Journal of Materials Chemistry, 2012, 22, 13643.	6.7	65
59	Nickel Catalysts Supported on Barium Hexaaluminate for Enhanced CO Methanation. Industrial & Engineering Chemistry Research, 2012, 51, 10345-10353.	3.7	89
60	Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catalysis Science and Technology, 2012, 2, 1207.	4.1	54
61	Facile Synthesis of Mesoporous Cu ₂ O Microspheres with Improved Catalytic Property for Dimethyldichlorosilane Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 1264-1274.	3.7	67
62	Enhanced Investigation of CO Methanation over Ni/Al ₂ O ₃ Catalysts for Synthetic Natural Gas Production. Industrial & Engineering Chemistry Research, 2012, 51, 4875-4886.	3.7	260
63	Flower-like CuO microspheres with enhanced catalytic performance for dimethyldichlorosilane synthesis. RSC Advances, 2012, 2, 2254.	3.6	44