Xingjun Zhu

List of Publications by Citations

Source: https://exaly.com/author-pdf/5987784/xingjun-zhu-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,623 26 35 37 g-index h-index citations papers 5.56 4,207 13.5 37 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
35	Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. <i>Nature Communications</i> , 2016 , 7, 10437	17.4	565
34	Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. <i>Biomaterials</i> , 2011 , 32, 1148-56	15.6	366
33	NIR photothermal therapy using polyaniline nanoparticles. <i>Biomaterials</i> , 2013 , 34, 9584-92	15.6	277
32	Anti-Stokes shift luminescent materials for bio-applications. Chemical Society Reviews, 2017, 46, 1025-1	1 038 .5	275
31	Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. <i>Biomaterials</i> , 2012 , 33, 4618-27	15.6	247
30	Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. <i>ACS Nano</i> , 2013 , 7, 11290-300	16.7	224
29	Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. <i>Nature Communications</i> , 2018 , 9, 2176	17.4	145
28	Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. <i>Biomaterials</i> , 2012 , 33, 6201-10	15.6	136
27	Ratiometric nanothermometer in vivo based on tripletsensitized upconversion. <i>Nature Communications</i> , 2018 , 9, 2698	17.4	126
26	Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. <i>Biomaterials</i> , 2013 , 34, 7905-12	15.6	125
25	Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. <i>Nature Communications</i> , 2020 , 11, 4	17.4	93
24	Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. <i>Nature Nanotechnology</i> , 2020 , 15, 154-161	28.7	89
23	Optimization of Prussian Blue Coated NaDyF4:x%Lu Nanocomposites for Multifunctional Imaging-Guided Photothermal Therapy. <i>Advanced Functional Materials</i> , 2016 , 26, 5120-5130	15.6	84
22	Non-spherical micro- and nanoparticles in nanomedicine. <i>Materials Horizons</i> , 2019 , 6, 1094-1121	14.4	81
21	Upconversion Luminescent Chemodosimeter Based on NIR Organic Dye for Monitoring Methylmercury In Vivo. <i>Advanced Functional Materials</i> , 2016 , 26, 1945-1953	15.6	80
20	Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. <i>NPG Asia Materials</i> , 2013 , 5, e75-e75	10.3	72
19	An NdI+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. <i>Nanoscale</i> , 2015 , 7, 4105-13	7.7	71

(2020-2016)

18	High-Contrast Visualization of Upconversion Luminescence in Mice Using Time-Gating Approach. <i>Analytical Chemistry</i> , 2016 , 88, 3449-54	7.8	68
17	Nd-Sensitized Upconversion Nanostructure as a Dual-Channel Emitting Optical Probe for Near Infrared-to-Near Infrared Fingerprint Imaging. <i>Inorganic Chemistry</i> , 2016 , 55, 10278-10283	5.1	62
16	Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. <i>Nano Letters</i> , 2019 , 19, 6725-6733	11.5	58
15	Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 ,	11.5	56
14	Energy Transfer Highway in Nd-Sensitized Nanoparticles for Efficient near-Infrared Bioimaging. <i>ACS Applied Materials & Distributed & Di</i>	9.5	49
13	Hybrid Nanoclusters for Near-Infrared to Near-Infrared Upconverted Persistent Luminescence Bioimaging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 32583-32590	9.5	42
12	Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 17894-901	9.5	37
11	Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging. <i>Biomaterials</i> , 2014 , 35, 4699-705	15.6	36
10	Near-Infrared Upconversion Luminescence and Bioimaging In Vivo Based on Quantum Dots. <i>Advanced Science</i> , 2019 , 6, 1801834	13.6	31
9	Dual functional NaYF:Yb, Er@NaYF:Yb, Nd core-shell nanoparticles for cell temperature sensing and imaging. <i>Nanotechnology</i> , 2018 , 29, 094001	3.4	23
8	17Estradiol-Loaded PEGlyated Upconversion Nanoparticles as a Bone-Targeted Drug Nanocarrier. <i>ACS Applied Materials & Drug Nanocarrier</i> , 15803-11	9.5	20
7	CB[8] gated photochromism of a diarylethene derivative containing thiazole orange groups. <i>Chemical Communications</i> , 2015 , 51, 6667-70	5.8	19
6	Intraperitoneal Administration of Biointerface-Camouflaged Upconversion Nanoparticles for Contrast Enhanced Imaging of Pancreatic Cancer. <i>Advanced Functional Materials</i> , 2016 , 26, 8631-8642	15.6	18
5	Intra-arterial infusion of PEGylated upconversion nanophosphors to improve the initial uptake by tumors in vivo. <i>RSC Advances</i> , 2014 , 4, 23580	3.7	12
4	EDTA-Modified 17 Estradiol-Laden Upconversion Nanocomposite for Bone-Targeted Hormone Replacement Therapy for Osteoporosis. <i>Theranostics</i> , 2020 , 10, 3281-3292	12.1	11
3	In vivo biodistribution and passive accumulation of upconversion nanoparticles in colorectal cancer models via intraperitoneal injection. <i>RSC Advances</i> , 2017 , 7, 31588-31596	3.7	10
2	Customized Photothermal Therapy of Subcutaneous Orthotopic Cancer by Multichannel Luminescent Nanocomposites. <i>Advanced Materials</i> , 2021 , 33, e2008615	24	10
1	Theranostic nanoparticles enabling the release of phosphorylated gemcitabine for advanced pancreatic cancer therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 2410-2417	7.3	4