Xingjun Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987784/publications.pdf Version: 2024-02-01

Хімсним 7нн

#	Article	IF	CITATIONS
1	Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications, 2016, 7, 10437.	5.8	750
2	Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials, 2011, 32, 1148-1156.	5.7	399
3	Anti-Stokes shift luminescent materials for bio-applications. Chemical Society Reviews, 2017, 46, 1025-1039.	18.7	385
4	NIR photothermal therapy using polyaniline nanoparticles. Biomaterials, 2013, 34, 9584-9592.	5.7	329
5	Core–shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials, 2012, 33, 4618-4627.	5.7	271
6	Core–Shell Lanthanide Upconversion Nanophosphors as Four-Modal Probes for Tumor Angiogenesis Imaging. ACS Nano, 2013, 7, 11290-11300.	7.3	252
7	Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nature Communications, 2020, 11, 4.	5.8	205
8	Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nature Communications, 2018, 9, 2176.	5.8	203
9	Ratiometric nanothermometer in vivo based on tripletÂsensitized upconversion. Nature Communications, 2018, 9, 2698.	5.8	194
10	Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nature Nanotechnology, 2020, 15, 154-161.	15.6	173
11	Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging. Biomaterials, 2012, 33, 6201-6210.	5.7	151
12	Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials, 2013, 34, 7905-7912.	5.7	139
13	Non-spherical micro- and nanoparticles in nanomedicine. Materials Horizons, 2019, 6, 1094-1121.	6.4	120
14	Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26332-26342.	3.3	118
15	Upconversion Luminescent Chemodosimeter Based on NIR Organic Dye for Monitoring Methylmercury In Vivo. Advanced Functional Materials, 2016, 26, 1945-1953.	7.8	106
16	Optimization of Prussian Blue Coated NaDyF ₄ : <i>x</i> %Lu Nanocomposites for Multifunctional Imagingâ€Guided Photothermal Therapy. Advanced Functional Materials, 2016, 26, 5120-5130.	7.8	98
17	Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. Nano Letters, 2019, 19, 6725-6733.	4.5	93
18	High-Contrast Visualization of Upconversion Luminescence in Mice Using Time-Gating Approach. Analytical Chemistry, 2016, 88, 3449-3454.	3.2	88

Xingjun Zhu

#	Article	IF	CITATIONS
19	An Nd ³⁺ -sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale, 2015, 7, 4105-4113.	2.8	79
20	Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Materials, 2013, 5, e75-e75.	3.8	75
21	Nd ³⁺ -Sensitized Upconversion Nanostructure as a Dual-Channel Emitting Optical Probe for Near Infrared-to-Near Infrared Fingerprint Imaging. Inorganic Chemistry, 2016, 55, 10278-10283.	1.9	75
22	Energy Transfer Highway in Nd ³⁺ -Sensitized Nanoparticles for Efficient near-Infrared Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 18540-18548.	4.0	65
23	Hybrid Nanoclusters for Near-Infrared to Near-Infrared Upconverted Persistent Luminescence Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 32583-32590.	4.0	58
24	Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection. ACS Applied Materials & Interfaces, 2016, 8, 17894-17901.	4.0	46
25	Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging. Biomaterials, 2014, 35, 4699-4705.	5.7	45
26	Nearâ€Infrared Upconversion Luminescence and Bioimaging In Vivo Based on Quantum Dots. Advanced Science, 2019, 6, 1801834.	5.6	42
27	Customized Photothermal Therapy of Subcutaneous Orthotopic Cancer by Multichannel Luminescent Nanocomposites. Advanced Materials, 2021, 33, e2008615.	11.1	36
28	Dual functional NaYF ₄ :Yb ³⁺ , Er ³⁺ @NaYF ₄ :Yb ³⁺ , Nd ³⁺ core–shell nanoparticles for cell temperature sensing and imaging. Nanotechnology, 2018, 29, 094001.	1.3	33
29	17β-Estradiol-Loaded PEGlyated Upconversion Nanoparticles as a Bone-Targeted Drug Nanocarrier. ACS Applied Materials & Interfaces, 2015, 7, 15803-15811.	4.0	26
30	CB[8] gated photochromism of a diarylethene derivative containing thiazole orange groups. Chemical Communications, 2015, 51, 6667-6670.	2.2	25
31	Intraperitoneal Administration of Biointerface amouflaged Upconversion Nanoparticles for Contrast Enhanced Imaging of Pancreatic Cancer. Advanced Functional Materials, 2016, 26, 8631-8642.	7.8	23
32	EDTA-Modified 17β-Estradiol-Laden Upconversion Nanocomposite for Bone-Targeted Hormone Replacement Therapy for Osteoporosis. Theranostics, 2020, 10, 3281-3292.	4.6	20
33	Intra-arterial infusion of PEGylated upconversion nanophosphors to improve the initial uptake by tumors in vivo. RSC Advances, 2014, 4, 23580.	1.7	14
34	In vivo biodistribution and passive accumulation of upconversion nanoparticles in colorectal cancer models via intraperitoneal injection. RSC Advances, 2017, 7, 31588-31596.	1.7	13
35	Lanthanide Luminescent Nanocomposite for Nonâ€Invasive Temperature Monitoring in Vivo. Chemistry - A European Journal, 2022, 28, .	1.7	7
36	Theranostic nanoparticles enabling the release of phosphorylated gemcitabine for advanced pancreatic cancer therapy. Journal of Materials Chemistry B, 2020, 8, 2410-2417.	2.9	6