Jinsong Ren

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5987519/jinsong-ren-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

32,608 165 98 400 h-index g-index citations papers 37,568 7.88 419 11.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
400	Self-Adaptive Single-Atom Catalyst Boosting Selective Ferroptosis in Tumor Cells ACS Nano, 2022,	16.7	10
399	Yeast@MOF bioreactor as a tumor metabolic symbiosis disruptor for the potent inhibition of metabolically heterogeneous tumors. <i>Nano Today</i> , 2022 , 42, 101331	17.9	1
398	Recent progress in sensor arrays using nucleic acid as sensing elements. <i>Coordination Chemistry Reviews</i> , 2022 , 456, 214379	23.2	2
397	A Metabolic Multistage Glutathione Depletion Used for Tumor-Specific Chemodynamic Therapy <i>ACS Nano</i> , 2022 ,	16.7	12
396	DNA-based platform for efficient and precisely targeted bioorthogonal catalysis in living systems <i>Nature Communications</i> , 2022 , 13, 1459	17.4	5
395	The COVID-19 susceptibility of cancer patients might due to the high expression of SARS-CoV-2 required host factors <i>Journal of Infection</i> , 2021 ,	18.9	1
394	Bio-Inspired Bimetallic Enzyme Mimics as Bio-Orthogonal Catalysts for Enhanced Bacterial Capture and Inhibition. <i>Chemistry of Materials</i> , 2021 , 33, 8052-8058	9.6	4
393	MicroRNA-Triggered Nanozymes Cascade Reaction for Tumor-Specific Chemodynamic Therapy. <i>Chemistry - A European Journal</i> , 2021 ,	4.8	1
392	Biological Mediator-Propelled Nanosweeper for Nonpharmaceutical Thrombus Therapy. <i>ACS Nano</i> , 2021 , 15, 6604-6613	16.7	18
391	Current Strategies for Modulating Alaggregation with Multifunctional Agents. <i>Accounts of Chemical Research</i> , 2021 , 54, 2172-2184	24.3	28
390	A Bimetallic Metal-Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12431-	-12437	. 13
389	A Bimetallic Metal®rganic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 12539-12545	3.6	2
388	A Nature-Inspired Metal-Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15436-15444	16.4	16
387	The recent biological applications of selenium-based nanomaterials. <i>Nano Today</i> , 2021 , 38, 101205	17.9	9
386	A Nature-Inspired Metal © rganic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. <i>Angewandte Chemie</i> , 2021 , 133, 15564-15572	3.6	1
385	Cell membrane-camouflaged liposomes for tumor cell-selective glycans engineering and imaging in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
384	Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19?. <i>Angewandte Chemie</i> , 2021 , 133, 436-442	3.6	5

(2020-2021)

383	Nature-Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia-Like Surface for Enhanced Bacterial Inhibition. <i>Angewandte Chemie</i> , 2021 , 133, 3511-3516	3.6	1
382	Nature-Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia-Like Surface for Enhanced Bacterial Inhibition. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3469-3474	16.4	70
381	Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19?. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 432-438	16.4	51
380	Catalytic asymmetric hydrogenation reaction by in situ formed ultra-fine metal nanoparticles in live thermophilic hydrogen-producing bacteria. <i>Nanoscale</i> , 2021 , 13, 8024-8029	7.7	3
379	Glycoengineering artificial receptors for microglia to phagocytose Alaggregates. <i>Chemical Science</i> , 2021 , 12, 4963-4969	9.4	8
378	Alaggregation behavior at interfaces with switchable wettability: a bioinspired perspective to understand amyloid formation. <i>Chemical Communications</i> , 2021 , 57, 2641-2644	5.8	2
377	Nucleic acid-driven aggregation-induced emission of Au nanoclusters for visualizing telomerase activity in living cells and in vivo. <i>Materials Horizons</i> , 2021 , 8, 1769-1775	14.4	7
376	Elimination of macrophage-entrapped antibiotic-resistant bacteria by a targeted metal-organic framework-based nanoplatform. <i>Chemical Communications</i> , 2021 , 57, 2903-2906	5.8	4
375	Engineering Amyloid Aggregation as a New Way to Eliminate Cancer Stem Cells by the Disruption of Iron Homeostasis. <i>Nano Letters</i> , 2021 , 21, 7379-7387	11.5	1
374	Near-infrared target enhanced peripheral clearance of amyloid-In Alzheimer's disease model. <i>Biomaterials</i> , 2021 , 276, 121065	15.6	3
373	Antibody Mimics as Bio-orthogonal Catalysts for Highly Selective Bacterial Recognition and Antimicrobial Therapy. <i>ACS Nano</i> , 2021 , 15, 15841-15849	16.7	7
372	Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-In an Alzheimer's Disease Model. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21702-2	17914	36
371	MOF-encapsulated nanozyme enhanced siRNA combo: Control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer's disease model. <i>Biomaterials</i> , 2020 , 255, 120160	15.6	47
370	Right-/left-handed helical G-quartet nanostructures with full-color and energy transfer circularly polarized luminescence. <i>Chemical Communications</i> , 2020 , 56, 7706-7709	5.8	8
369	Modular AND Gate-Controlled Delivery Platform for Tumor Microenvironment Specific Activation of Protein Activity. <i>Chemistry - A European Journal</i> , 2020 , 26, 7573-7577	4.8	0
368	Neutrophil-Membrane-Directed Bioorthogonal Synthesis of Inflammation-Targeting Chiral Drugs. <i>CheM</i> , 2020 , 6, 2060-2072	16.2	28
367	A mesoporous encapsulated nanozyme for decontaminating two kinds of wastewater and avoiding secondary pollution. <i>Nanoscale</i> , 2020 , 12, 14465-14471	7.7	13
366	Molecular crowding effects on the biochemical properties of amyloid Eheme, AECu and AEheme-Cu complexes. <i>Chemical Science</i> , 2020 , 11, 7479-7486	9.4	5

365	Bioinspired Construction of a Nanozyme-Based HO Homeostasis Disruptor for Intensive Chemodynamic Therapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5177-5183	16.4	195
364	Developing Enzyme-Responsive Nanomedicine for Inhibition of hTERT Mitochondrial Translocation. <i>Advanced Therapeutics</i> , 2020 , 3, 1900203	4.9	3
363	Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. <i>Nano Research</i> , 2020 , 13, 496-502	10	27
362	Colorimetric Band-aids for Point-of-Care Sensing and Treating Bacterial Infection. <i>ACS Central Science</i> , 2020 , 6, 207-212	16.8	44
361	An Enzyme-Mimicking Single-Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5108-5	1454	82
360	An Enzyme-Mimicking Single-Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. <i>Angewandte Chemie</i> , 2020 , 132, 5146-5153	3.6	12
359	A DNA/metal cluster-based nano-lantern as an intelligent theranostic device. <i>Chemical Communications</i> , 2020 , 56, 5295-5298	5.8	4
358	Carbon-based Nanozeymes. <i>Nanostructure Science and Technology</i> , 2020 , 171-193	0.9	2
357	A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. <i>Materials Horizons</i> , 2020 , 7, 3291-3297	14.4	21
356	Carbon Monoxide Controllable Targeted Gas Therapy for Synergistic Anti-inflammation. <i>IScience</i> , 2020 , 23, 101483	6.1	11
355	Target-driven supramolecular self-assembly for selective amyloid-photooxygenation against Alzheimer's disease. <i>Chemical Science</i> , 2020 , 11, 11003-11008	9.4	11
354	Recent advances in the construction of nanozyme-based logic gates. <i>Biophysics Reports</i> , 2020 , 6, 245-25	5 3.5	1
353	Fe(III)-Oxidized Graphitic Carbon Nitride Nanosheets as a Sensitive Fluorescent Sensor for Detection and Imaging of Fluoride Ions. <i>Sensors and Actuators B: Chemical</i> , 2020 , 321, 128630	8.5	6
352	Tumor-activatable ultrasmall nanozyme generator for enhanced penetration and deep catalytic therapy. <i>Biomaterials</i> , 2020 , 258, 120263	15.6	30
351	Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. <i>Chemical Science</i> , 2020 , 11, 12721-12730	9.4	14
350	A Biocompatible Second Near-Infrared Nanozyme for Spatiotemporal and Non-Invasive Attenuation of Amyloid Deposition through Scalp and Skull. <i>ACS Nano</i> , 2020 , 14, 9894-9903	16.7	31
349	A Smart Nanoparticle-Laden and Remote-Controlled Self-Destructive Macrophage for Enhanced Chemo/Chemodynamic Synergistic Therapy. <i>ACS Nano</i> , 2020 , 14, 13894-13904	16.7	46
348	Construction of a chiral artificial enzyme used for enantioselective catalysis in live cells. <i>Chemical Science</i> , 2020 , 11, 11344-11350	9.4	6

(2019-2020)

347	Near-infrared-traceable DNA nano-hydrolase: specific eradication of telomeric G-overhang in vivo. <i>Nucleic Acids Research</i> , 2020 , 48, 9986-9994	20.1	1
346	Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. <i>Nano Letters</i> , 2020 , 20, 7350-7358	11.5	45
345	Near-Infrared Light Dual-Promoted Heterogeneous Copper Nanocatalyst for Highly Efficient Bioorthogonal Chemistry. <i>ACS Nano</i> , 2020 , 14, 4178-4187	16.7	30
344	Defect-Rich Adhesive Nanozymes as Efficient Antibiotics for Enhanced Bacterial Inhibition. Angewandte Chemie, 2019 , 131, 16382-16388	3.6	6
343	Defect-Rich Adhesive Nanozymes as Efficient Antibiotics for Enhanced Bacterial Inhibition. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16236-16242	16.4	129
342	Primer-Modified G-Quadruplex-Au Nanoparticles for Colorimetric Assay of Human Telomerase Activity and Initial Screening of Telomerase Inhibitors. <i>Methods in Molecular Biology</i> , 2019 , 2035, 347-35	₫·4	О
341	Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. <i>Biomaterials</i> , 2019 , 223, 119462	15.6	64
340	Silver-Infused Porphyrinic Metal Drganic Framework: Surface-Adaptive, On-Demand Nanoplatform for Synergistic Bacteria Killing and Wound Disinfection. <i>Advanced Functional Materials</i> , 2019 , 29, 180859	45.6	102
339	DNA-MnO nanosheets as washing- and label-free platform for array-based differentiation of cell types. <i>Analytica Chimica Acta</i> , 2019 , 1056, 1-6	6.6	9
338	Porphyrin MOF Dots B ased, Function-Adaptive Nanoplatform for Enhanced Penetration and Photodynamic Eradication of Bacterial Biofilms. <i>Advanced Functional Materials</i> , 2019 , 29, 1903018	15.6	88
337	Near-Infrared Activated Black Phosphorus as a Nontoxic Photo-Oxidant for Alzheimer's Amyloid- Peptide. <i>Small</i> , 2019 , 15, e1901116	11	44
336	Constructing metalBrganic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. <i>Materials Horizons</i> , 2019 , 6, 1682-1687	14.4	37
335	Two-Dimensional Metal-Organic Framework/Enzyme Hybrid Nanocatalyst as a Benign and Self-Activated Cascade Reagent for in Vivo Wound Healing. <i>ACS Nano</i> , 2019 , 13, 5222-5230	16.7	202
334	A Biocompatible Heterogeneous MOF-Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6987-6992	16.4	90
333	A Biocompatible Heterogeneous MOFfu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. <i>Angewandte Chemie</i> , 2019 , 131, 7061-7066	3.6	28
332	Chirality-Selected Chemical Modulation of Amyloid Aggregation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6915-6921	16.4	45
331	Construction of Nanozyme-Hydrogel for Enhanced Capture and Elimination of Bacteria. <i>Advanced Functional Materials</i> , 2019 , 29, 1900518	15.6	109
330	A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. <i>Biomaterials</i> , 2019 , 208, 21-31	15.6	102

329	Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. <i>Chemical Reviews</i> , 2019 , 119, 4357-4412	68.1	1010
328	Renal-Clearable Porphyrinic Metal-Organic Framework Nanodots for Enhanced Photodynamic Therapy. <i>ACS Nano</i> , 2019 , 13, 9206-9217	16.7	68
327	Wireless near-infrared electrical stimulation of neurite outgrowth. <i>Chemical Communications</i> , 2019 , 55, 9833-9836	5.8	4
326	Depriving Bacterial Adhesion-Related Molecule to Inhibit Biofilm Formation Using CeO -Decorated Metal-Organic Frameworks. <i>Small</i> , 2019 , 15, e1902522	11	37
325	A Near-Infrared-Controllable Artificial Metalloprotease Used for Degrading Amyloid-IMonomers and Aggregates. <i>Chemistry - A European Journal</i> , 2019 , 25, 11852-11858	4.8	18
324	Remote and reversible control of in vivo bacteria clustering by NIR-driven multivalent upconverting nanosystems. <i>Biomaterials</i> , 2019 , 217, 119310	15.6	17
323	A Sequential Target-Responsive Nanocarrier with Enhanced Tumor Penetration and Neighboring Effect In Vivo. <i>Small</i> , 2019 , 15, e1903323	11	18
322	Ultrasensitive magnetic resonance imaging of systemic reactive oxygen species for early diagnosis of sepsis using activatable nanoprobes. <i>Chemical Science</i> , 2019 , 10, 3770-3778	9.4	23
321	Combating Biofilm Associated Infection In Vivo: Integration of Quorum Sensing Inhibition and Photodynamic Treatment based on Multidrug Delivered Hollow Carbon Nitride Sphere. <i>Advanced Functional Materials</i> , 2019 , 29, 1808222	15.6	44
320	Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. <i>Chemical Communications</i> , 2019 , 55, 15097-15100	5.8	20
319	G-quadruplex DNA regulates invertible circularly polarized luminescence. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13947-13952	7.1	17
318	Glutathione Depletion in a Benign Manner by MoS -Based Nanoflowers for Enhanced Hypoxia-Irrelevant Free-Radical-Based Cancer Therapy. <i>Small</i> , 2019 , 15, e1904870	11	50
317	Self-triggered click reaction in an Alzheimer's disease model: bifunctional drug synthesis catalyzed by neurotoxic copper accumulated in amyloid-lplaques. <i>Chemical Science</i> , 2019 , 10, 10343-10350	9.4	19
316	Metal-Organic Frameworks Harness Cu Chelating and Photooxidation Against Amyloid Aggregation in Vivo. <i>Chemistry - A European Journal</i> , 2019 , 25, 3489-3495	4.8	32
315	Facile preparation of metal-organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment. <i>Talanta</i> , 2019 , 194, 703-708	6.2	42
314	Direct visualization of MicroRNA in vivo via an intelligent MnO2-carried catalytic DNA machine. <i>Sensors and Actuators B: Chemical</i> , 2019 , 283, 124-129	8.5	5
313	Cross-fibrillation of insulin and amyloid ton chiral surfaces: Chirality affects aggregation kinetics and cytotoxicity. <i>Nano Research</i> , 2018 , 11, 4102-4110	10	16
312	Enzyme Mimicry for Combating Bacteria and Biofilms. <i>Accounts of Chemical Research</i> , 2018 , 51, 789-799	24.3	216

(2018-2018)

311	Point-of-Care Identification of Bacteria Using Protein-Encapsulated Gold Nanoclusters. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701370	10.1	30
310	Nucleotide-Based Assemblies for Green Synthesis of Silver Nanoparticles with Controlled Localized Surface Plasmon Resonances and Their Applications. <i>ACS Applied Materials & Discrete Applied</i> 10, 9929-9937	9.5	21
309	Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9224-9237	16.4	274
308	DNA metallization: principles, methods, structures, and applications. <i>Chemical Society Reviews</i> , 2018 , 47, 4017-4072	58.5	108
307	Kohlenstoff-Nanozyme: Enzymatische Eigenschaften, Katalysemechanismen und Anwendungen. <i>Angewandte Chemie</i> , 2018 , 130, 9366-9379	3.6	11
306	Bioinspired Design of Fe -Doped Mesoporous Carbon Nanospheres for Enhanced Nanozyme Activity. <i>Chemistry - A European Journal</i> , 2018 , 24, 7259-7263	4.8	45
305	Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. <i>Nature Communications</i> , 2018 , 9, 1209	17.4	82
304	Specific Oxygenated Groups Enriched Graphene Quantum Dots as Highly Efficient Enzyme Mimics. <i>Small</i> , 2018 , 14, e1703710	11	60
303	Stereochemistry and amyloid inhibition: Asymmetric triplex metallohelices enantioselectively bind to Alþeptide. <i>Science Advances</i> , 2018 , 4, eaao6718	14.3	39
302	Phytochemical-encapsulated nanoplatform for Bn-demand Lynergistic treatment of multidrug-resistant bacteria. <i>Nano Research</i> , 2018 , 11, 3762-3770	10	21
301	Fingerprint-like pattern for recognition of thiols. Sensors and Actuators B: Chemical, 2018, 260, 183-188	8.5	7
300	Nanozyme Decorated Metal-Organic Frameworks for Enhanced Photodynamic Therapy. <i>ACS Nano</i> , 2018 , 12, 651-661	16.7	464
299	Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. <i>Chemical Society Reviews</i> , 2018 , 47, 1285-1306	58.5	116
298	Selenium-Based Nanozyme as Biomimetic Antioxidant Machinery. <i>Chemistry - A European Journal</i> , 2018 , 24, 10224	4.8	27
297	Rational design of a Bense and treatBystem to target amyloid aggregates related to AlzheimerB disease. <i>Nano Research</i> , 2018 , 11, 1987-1997	10	14
296	Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition. <i>Nano Research</i> , 2018 , 11, 3213-3221	10	20
295	Hydrogen-producing hyperthermophilic bacteria synthesized size-controllable fine gold nanoparticles with excellence for eradicating biofilm and antibacterial applications. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4602-4609	7.3	26
294	Photocontrolled Multidirectional Differentiation of Mesenchymal Stem Cells on an Upconversion Substrate. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11182-11187	16.4	33

293	Photocontrolled Multidirectional Differentiation of Mesenchymal Stem Cells on an Upconversion Substrate. <i>Angewandte Chemie</i> , 2018 , 130, 11352-11357	3.6	4
292	Near-Infrared Switchable Fullerene-Based Synergy Therapy for Alzheimer's Disease. <i>Small</i> , 2018 , 14, e1801852	11	57
291	Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. <i>Nature Communications</i> , 2018 , 9, 3334	17.4	308
290	A HO-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms in vivo. <i>Nanoscale</i> , 2018 , 10, 17656-17662	7.7	26
289	Redox-Activated Near-Infrared-Responsive Polyoxometalates Used for Photothermal Treatment of Alzheimer's Disease. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800320	10.1	30
288	An intelligent 1:2 demultiplexer as an intracellular theranostic device based on DNA/Ag cluster-gated nanovehicles. <i>Nanotechnology</i> , 2018 , 29, 065501	3.4	12
287	Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7908-7915	7.3	22
286	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. <i>Chemical Society Reviews</i> , 2018 , 47, 8639-8684	58.5	82
285	Nanozyme as Artificial Receptor with Multiple Readouts for Pattern Recognition. <i>Analytical Chemistry</i> , 2018 , 90, 11775-11779	7.8	66
284	Erythrocyte Membrane Cloaked Metal-Organic Framework Nanoparticle as Biomimetic Nanoreactor for Starvation-Activated Colon Cancer Therapy. <i>ACS Nano</i> , 2018 , 12, 10201-10211	16.7	214
283	Photomodulated Nanozyme Used for a Gram-Selective Antimicrobial. <i>Chemistry of Materials</i> , 2018 , 30, 7027-7033	9.6	58
282	Ultrasmall Nanozymes Isolated within Porous Carbonaceous Frameworks for Synergistic Cancer Therapy: Enhanced Oxidative Damage and Reduced Energy Supply. <i>Chemistry of Materials</i> , 2018 , 30, 78	39 : 583	₃₉ 59
281	Mirror-Image Dependence: Targeting Enantiomeric G-Quadruplex DNA Using Triplex Metallohelices. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15723-15727	16.4	29
280	Mirror-Image Dependence: Targeting Enantiomeric G-Quadruplex DNA Using Triplex Metallohelices. <i>Angewandte Chemie</i> , 2018 , 130, 15949-15953	3.6	13
279	Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16791-16795	16.4	54
278	Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. <i>Angewandte Chemie</i> , 2018 , 130, 17033-17037	3.6	7
277	Metal-Organic Framework-Based Nanoplatform for Intracellular Environment-Responsive Endo/Lysosomal Escape and Enhanced Cancer Therapy. <i>ACS Applied Materials & Discrete Material</i>	9.5	47
276	Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. <i>Nano Letters</i> , 2018 , 18, 3344-3351	11.5	120

(2017-2017)

275	Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. <i>Chemical Communications</i> , 2017 , 53, 1840-1843	5.8	41	
274	Encapsulation of aggregated gold nanoclusters in a metal-organic framework for real-time monitoring of drug release. <i>Nanoscale</i> , 2017 , 9, 4128-4134	7.7	72	
273	A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection. <i>Chemical Communications</i> , 2017 , 53, 3082-3085	5.8	51	
272	N-Methyl Mesoporphyrin IX as an Effective Probe for Monitoring Alzheimer's Disease EAmyloid Aggregation in Living Cells. <i>ACS Chemical Neuroscience</i> , 2017 , 8, 1299-1304	5.7	23	
271	HostBuest recognition on photo-responsive cell surfaces directs cellBell contacts. <i>Materials Today</i> , 2017 , 20, 16-21	21.8	21	
270	Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA. <i>Nucleic Acids Research</i> , 2017 , 45, 5026-5035	20.1	34	
269	An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS. ACS Nano, 2017, 11, 4651-46	59 6.7	139	
268	A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis. <i>Chemical Communications</i> , 2017 , 53, 6215-6218	5.8	27	
267	Immobilization of enzyme on chiral polyelectrolyte surface. <i>Analytica Chimica Acta</i> , 2017 , 952, 88-95	6.6	19	
266	Light-Mediated Reversible Modulation of ROS Level in Living Cells by Using an Activity-Controllable Nanozyme. <i>Small</i> , 2017 , 13, 1603051	11	52	
265	Artificial Enzyme-based Logic Operations to Mimic an Intracellular Enzyme-participated Redox Balance System. <i>Chemistry - A European Journal</i> , 2017 , 23, 9156-9161	4.8	12	
264	Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions. <i>Chemical Communications</i> , 2017 , 53, 8415-8418	5.8	5	
263	An intelligent near-infrared light activatable nanosystem for accurate regulation of zinc signaling in living cells. <i>Nano Research</i> , 2017 , 10, 3068-3076	10	7	
262	A DNA-Based Label-Free Artificial Tongue for Pattern Recognition of Metal Ions. <i>Chemistry - A European Journal</i> , 2017 , 23, 9258-9261	4.8	20	
261	Hyaluronic Acid-Templated Ag Nanoparticles/Graphene Oxide Composites for Synergistic Therapy of Bacteria Infection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 19717-19724	9.5	86	
2 60	A NIR-controlled cage mimicking system for hydrophobic drug mediated cancer therapy. <i>Biomaterials</i> , 2017 , 139, 151-162	15.6	72	
259	A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. <i>NPG Asia Materials</i> , 2017 , 9, e356-e356	10.3	43	
258	A pH-switched mesoporous nanoreactor for synergetic therapy. <i>Nano Research</i> , 2017 , 10, 1651-1661	10	15	

257	Metallo-supramolecular Complexes Enantioselectively Eradicate Cancer Stem Cells in Vivo. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16201-16209	16.4	47
256	A Near-Infrared Responsive Drug Sequential Release System for Better Eradicating Amyloid Aggregates. <i>Small</i> , 2017 , 13, 1701817	11	25
255	A bifunctional nanomodulator for boosting CpG-mediated cancer immunotherapy. <i>Nanoscale</i> , 2017 , 9, 14236-14247	7.7	38
254	How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. <i>Chemical Communications</i> , 2017 , 53, 10588-10591	5.8	54
253	Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation. <i>Angewandte Chemie</i> , 2017 , 129, 13849-13853	3.6	11
252	Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13661-13665	16.4	124
251	Confinement of Reactive Oxygen Species in an Artificial-Enzyme-Based Hollow Structure To Eliminate Adverse Effects of Photocatalysis on UV Filters. <i>Chemistry - A European Journal</i> , 2017 , 23, 135	1 8 -13!	524
250	Autonomous and Continuous Stimuli-Responsive Polymer Surface for Antibacterial Application through Enzymatic Self-Propagating Reactions. <i>Chemistry - A European Journal</i> , 2017 , 23, 14883-14888	4.8	9
249	Stereoselective Nanozyme Based on Ceria Nanoparticles Engineered with Amino Acids. <i>Chemistry - A European Journal</i> , 2017 , 23, 18146-18150	4.8	43
248	Metal-Ion-Activated DNAzymes Used for Regulation of Telomerase Activity in Living Cells. <i>Chemistry - A European Journal</i> , 2017 , 23, 11226-11229	4.8	15
247	Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. <i>Biosensors and Bioelectronics</i> , 2017 , 98, 378-385	11.8	37
246	Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions. <i>ACS Nano</i> , 2017 , 11, 7770-7780	16.7	40
245	Nucleic acid-templated functional nanocomposites for biomedical applications. <i>Materials Today</i> , 2017 , 20, 179-190	21.8	27
244	Activation of biologically relevant levels of reactive oxygen species by Au/g-CN hybrid nanozyme for bacteria killing and wound disinfection. <i>Biomaterials</i> , 2017 , 113, 145-157	15.6	234
243	Structure and Stabilization of CGC+ Triplex DNA 2017 , 329-352		
242	Using Multifunctional Peptide Conjugated Au Nanorods for Monitoring Emmyloid Aggregation and Chemo-Photothermal Treatment of Alzheimer's Disease. <i>Theranostics</i> , 2017 , 7, 2996-3006	12.1	56
241	Label-free ratiometric electrochemical detection of the mutated apolipoprotein E gene associated with Alzheimer's disease. <i>Chemical Communications</i> , 2016 , 52, 12080-12083	5.8	43
240	Metal-Organic-Framework-Based Vaccine Platforms for Enhanced Systemic Immune and Memory Response. <i>Advanced Functional Materials</i> , 2016 , 26, 6454-6461	15.6	152

239	Spatiotemporal control of cell-cell reversible interactions using molecular engineering. <i>Nature Communications</i> , 2016 , 7, 13088	17.4	73
238	Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid Epeptide aggregation. <i>Nano Research</i> , 2016 , 9, 2411-2423	10	28
237	Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-[peptide. <i>Biomaterials</i> , 2016 , 98, 92-102	15.6	101
236	A Lactamase-Imprinted Responsive Hydrogel for the Treatment of Antibiotic-Resistant Bacteria. Angewandte Chemie, 2016 , 128, 8181-8185	3.6	11
235	Conformational switch-mediated accelerated release of drug from cytosine-rich nucleic acid-capped magnetic nanovehicles. <i>Chemical Communications</i> , 2016 , 52, 3364-7	5.8	4
234	Artificial tongue based on metal-biomolecule coordination polymer nanoparticles. <i>Chemical Communications</i> , 2016 , 52, 3410-3	5.8	43
233	Incorporation of O(6)-methylguanine restricts the conformational conversion of the human telomere G-quadruplex under molecular crowding conditions. <i>Chemical Communications</i> , 2016 , 52, 1903	3 -5 8	3
232	Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. <i>Chemical Communications</i> , 2016 , 52, 5550-3	5.8	31
231	Carbon Nanomaterials and DNA: from Molecular Recognition to Applications. <i>Accounts of Chemical Research</i> , 2016 , 49, 461-70	24.3	113
230	Coupling a DNA-ligand ensemble with Ag cluster formation for the label-free and ratiometric detection of intracellular biothiols. <i>Chemical Communications</i> , 2016 , 52, 5167-70	5.8	31
229	Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer disease. <i>Nano Research</i> , 2016 , 9, 1079-1090	10	66
228	Synergistic eradication of antibiotic-resistant bacteria based biofilms in vivo using a NIR-sensitive nanoplatform. <i>Chemical Communications</i> , 2016 , 52, 5312-5	5.8	38
227	A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. <i>Nanoscale</i> , 2016 , 8, 12570-8	7.7	71
226	Enantioselective targeting left-handed Z-G-quadruplex. Chemical Communications, 2016, 52, 1365-8	5.8	16
225	Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. <i>Chemical Communications</i> , 2016 , 52, 557-60	5.8	45
224	Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6646-50	16.4	214
223	Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. <i>Angewandte Chemie</i> , 2016 , 128, 6758-6762	3.6	52
222	Design of Surface-Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for High-Performance Biphasic Biocatalysis. <i>Advanced Materials</i> , 2016 , 28, 1682-8	24	105

221	A Lactamase-Imprinted Responsive Hydrogel for the Treatment of Antibiotic-Resistant Bacteria. Angewandte Chemie - International Edition, 2016 , 55, 8049-53	16.4	73
220	Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. <i>Small</i> , 2016 , 12, 4713-8	11	126
219	DNA-fueled molecular machine for label-free and non-enzymatic ultrasensitive detection of telomerase activity. <i>Analyst, The</i> , 2016 , 141, 4855-8	5	4
218	Self-Assembly and Compartmentalization of Nanozymes in Mesoporous Silica-Based Nanoreactors. <i>Chemistry - A European Journal</i> , 2016 , 22, 5705-11	4.8	20
217	An ultrathin graphitic carbon nitride nanosheet: a novel inhibitor of metal-induced amyloid aggregation associated with Alzheimer's disease. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4072-4075	7.3	23
216	Non-toxic lead sulfide nanodots as efficient contrast agents for visualizing gastrointestinal tract. <i>Biomaterials</i> , 2016 , 100, 17-26	15.6	26
215	Bacterial Hyaluronidase Self-Triggered Prodrug Release for Chemo-Photothermal Synergistic Treatment of Bacterial Infection. <i>Small</i> , 2016 , 12, 6200-6206	11	150
214	Embedding magnetic nanoparticles into coordination polymers to mimic zinc ion transporters for targeted tumor therapy. <i>Chemical Communications</i> , 2016 , 52, 12598-12601	5.8	9
213	Artificial Metalloenzyme-Based Enzyme Replacement Therapy for the Treatment of Hyperuricemia. <i>Advanced Functional Materials</i> , 2016 , 26, 7921-7928	15.6	37
212	Rationally Designed CeNP@MnMoS4 Core-Shell Nanoparticles for Modulating Multiple Facets of Alzheimer's Disease. <i>Chemistry - A European Journal</i> , 2016 , 22, 14523-6	4.8	16
211	Copper(II) Craphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. <i>Angewandte Chemie</i> , 2016 , 128, 11639-11643	3.6	79
210	Copper(II)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11467-71	16.4	282
209	New insights in amyloid beta interactions with human telomerase. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1213-9	16.4	53
208	Individual surface-engineered microorganisms as robust Pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4904-8	16.4	86
207	Highly stable and reusable imprinted artificial antibody used for detection and disinfection of pathogens. <i>Chemical Science</i> , 2015 , 6, 2822-2826	9.4	48
206	Near infrared-caged d-amino acids multifunctional assembly for simultaneously eradicating biofilms and bacteria. <i>Chemical Communications</i> , 2015 , 51, 12677-9	5.8	21
205	Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. <i>Nanoscale</i> , 2015 , 7, 12419-26	7.7	37
204	Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. <i>Nano Research</i> , 2015 , 8, 1648-1658	10	155

(2015-2015)

203	An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract. <i>Biomaterials</i> , 2015 , 56, 206-18	15.6	92	
202	Enzyme-regulated the changes of pH values for assembling a colorimetric and multistage interconnection logic network with multiple readouts. <i>Analytica Chimica Acta</i> , 2015 , 870, 92-8	6.6	18	
201	Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7176-80	16.4	274	
200	Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer disease. <i>Nano Research</i> , 2015 , 8, 2400-2414	10	29	
199	Growth of hydrophilic CuS nanowires via DNA-mediated self-assembly process and their use in fabricating smart hybrid films for adjustable chemical release. <i>Chemistry - A European Journal</i> , 2015 , 21, 2930-5	4.8	7	
198	Metal nanoclusters: novel probes for diagnostic and therapeutic applications. <i>Chemical Society Reviews</i> , 2015 , 44, 8636-63	58.5	504	
197	Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid Epeptide aggregation and can be used for photothermal treatment of Alzheimer disease. <i>Nano Research</i> , 2015 , 8, 3216-3227	10	66	
196	Single-layer tungsten oxide as intelligent photo-responsive nanoagents for permanent male sterilization. <i>Biomaterials</i> , 2015 , 69, 56-64	15.6	35	
195	Endogenous signalling control of cell adhesion by using aptamer functionalized biocompatible hydrogel. <i>Chemical Science</i> , 2015 , 6, 6762-6768	9.4	20	
194	Recent advances in bioapplications of C-dots. <i>Carbon</i> , 2015 , 85, 309-327	10.4	2 80	
193	Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. <i>Advanced Materials</i> , 2015 , 27, 1097-104	24	385	
192	G-quartet-based nanostructure for mimicking light-harvesting antenna. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 892-6	16.4	45	
191	Positional assembly of hemin and gold nanoparticles in graphene-mesoporous silica nanohybrids for tandem catalysis. <i>Chemical Science</i> , 2015 , 6, 1272-1276	9.4	63	
190	Electrochemically and DNA-triggered cell release from ferrocene/Etyclodextrin and aptamer modified dualfunctionalized graphene substrate. <i>Nano Research</i> , 2015 , 8, 887-899	10	23	
189	Gold-nanoparticle-based multifunctional amyloid-linhibitor against Alzheimer's disease. <i>Chemistry - A European Journal</i> , 2015 , 21, 829-35	4.8	93	
188	Upconversion nanoprobes for efficiently in witro imaging reactive oxygen species and in wivo diagnosing rheumatoid arthritis. <i>Biomaterials</i> , 2015 , 39, 15-22	15.6	86	
187	Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for			
	dual-triggered synergistic cancer therapy. <i>Carbon</i> , 2015 , 82, 479-488	10.4	74	,
186		ŕ	74 31	

185	InnenrEktitelbild: Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots (Angew. Chem. 24/2015). <i>Angewandte Chemie</i> , 2015 , 127, 7305-7305	3.6	2
184	Mussel Byssus-Like Reversible Metal-Chelated Supramolecular Complex Used for Dynamic Cellular Surface Engineering and Imaging. <i>Advanced Functional Materials</i> , 2015 , 25, 3775-3784	15.6	59
183	Individual Surface-Engineered Microorganisms as Robust Pickering Interfacial Biocatalysts for Resistance-Minimized Phase-Transfer Bioconversion. <i>Angewandte Chemie</i> , 2015 , 127, 4986-4990	3.6	20
182	Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform. <i>Small</i> , 2015 , 11, 4970-5	11	44
181	Chiral Metallo-Supramolecular Complex Directed Enantioselective Self-Assembly of Esheet Breaker Peptide for Amyloid Inhibition. <i>Small</i> , 2015 , 11, 4651-5	11	7
180	G-Quartet-Based Nanostructure for Mimicking Light-Harvesting Antenna. <i>Angewandte Chemie</i> , 2015 , 127, 906-910	3.6	9
179	Deciphering a Nanocarbon-Based Artificial Peroxidase: Chemical Identification of the Catalytically Active and Substrate-Binding Sites on Graphene Quantum Dots. <i>Angewandte Chemie</i> , 2015 , 127, 7282-7	286	32
178	Programmable Downregulation of Enzyme Activity Using a Fever and NIR-Responsive Molecularly Imprinted Nanocomposite. <i>Small</i> , 2015 , 11, 6172-8	11	11
177	A "Sense-and-Treat" Hydrogel Used for Treatment of Bacterial Infection on the Solid Matrix. <i>Small</i> , 2015 , 11, 5540-4	11	30
176	Noninvasive and Reversible Cell Adhesion and Detachment via Single-Wavelength Near-Infrared Laser Mediated Photoisomerization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8199-205	16.4	91
175	A CuS-based chemical tongue chip for pattern recognition of proteins and antibiotic-resistant bacteria. <i>Chemical Communications</i> , 2015 , 51, 2675-8	5.8	27
174	A cytotoxic amyloid oligomer self-triggered and NIR-enhanced amyloidosis therapeutic system. <i>Nano Research</i> , 2015 , 8, 2431-2444	10	6
173	One-step synthesized immunostimulatory oligonucleotides-functionalized quantum dots for simultaneous enhanced immunogenicity and cell imaging. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 126, 585-9	6	8
172	Tumor Microenvironment Activated Photothermal Strategy for Precisely Controlled Ablation of Solid Tumors upon NIR Irradiation. <i>Advanced Functional Materials</i> , 2015 , 25, 1574-1580	15.6	108
171	Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-down strategy for long-time cellular imaging. <i>Chemistry - A European Journal</i> , 2015 , 21, 3791-7	4.8	88
170	Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. <i>Chemical Communications</i> , 2015 , 51, 4386-9	5.8	117
169	Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. <i>Scientific Reports</i> , 2014 , 4, 3564	4.9	175
168	Multiconfigurable logic gates based on fluorescence switching in adaptive coordination polymer nanoparticles. <i>Advanced Materials</i> , 2014 , 26, 1111-7	24	101

167	Nano-gold as artificial enzymes: hidden talents. <i>Advanced Materials</i> , 2014 , 26, 4200-17	24	290
166	DNA-regulated upconverting nanoparticle signal transducers for multivalued logic operation. <i>Small</i> , 2014 , 10, 1500-3	11	25
165	DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. <i>Advanced Materials</i> , 2014 , 26, 2424-30	24	99
164	Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. <i>Chemistry - A European Journal</i> , 2014 , 20, 7501-6	4.8	80
163	A Smart Nanoassembly for Multistage Targeted Drug Delivery and Magnetic Resonance Imaging. <i>Advanced Functional Materials</i> , 2014 , 24, 3612-3620	15.6	86
162	Catalytically active nanomaterials: a promising candidate for artificial enzymes. <i>Accounts of Chemical Research</i> , 2014 , 47, 1097-105	24.3	846
161	One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery. <i>Nanoscale</i> , 2014 , 6, 1445-52	7.7	56
160	Polypyrrole nanoparticles as promising enzyme mimics for sensitive hydrogen peroxide detection. <i>Chemical Communications</i> , 2014 , 50, 3030-2	5.8	103
159	Multifunctional upconverting nanoparticles for near-infrared triggered and synergistic antibacterial resistance therapy. <i>Chemical Communications</i> , 2014 , 50, 10488-90	5.8	92
158	Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria. <i>Chemistry - A European Journal</i> , 2014 , 20, 394-8	4.8	60
157	A semipermeable enzymatic nanoreactor as an efficient modulator for reversible pH regulation. <i>Nanoscale</i> , 2014 , 6, 11328-35	7.7	12
156	Nucleic acids and smart materials: advanced building blocks for logic systems. <i>Advanced Materials</i> , 2014 , 26, 5742-57	24	81
155	Artificial Light-Harvesting Material Based on Self-Assembly of Coordination Polymer Nanoparticles. <i>Advanced Functional Materials</i> , 2014 , 24, 4549-4555	15.6	47
154	Functionalized graphene as sensitive electrochemical label in target-dependent linkage of split aptasensor for dual detection. <i>Biosensors and Bioelectronics</i> , 2014 , 62, 52-8	11.8	37
153	DNA-mediated biomineralization of rare-earth nanoparticles for simultaneous imaging and stimuli-responsive drug delivery. <i>Biomaterials</i> , 2014 , 35, 8694-702	15.6	43
152	Engineered CpG-Antigen Conjugates Protected Gold Nanoclusters as Smart Self-Vaccines for Enhanced Immune Response and Cell Imaging. <i>Advanced Functional Materials</i> , 2014 , 24, 1004-1010	15.6	90
151	Near-infrared upconversion controls photocaged cell adhesion. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2248-51	16.4	170
150	Chiral metallohelical complexes enantioselectively target amyloid Ifor treating Alzheimer's disease. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11655-63	16.4	112

149	A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. <i>Biomaterials</i> , 2014 , 35, 9678-88	15.6	149
148	Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo. <i>ACS Nano</i> , 2014 , 8, 6014-23	16.7	132
147	Array-based sensing of proteins and bacteria by using multiple luminescent nanodots as fluorescent probes. <i>Small</i> , 2014 , 10, 3667-71	11	48
146	Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. <i>Analytica Chimica Acta</i> , 2014 , 809, 128-33	6.6	132
145	Opposing enantiomers of tartaric acid anchored on a surface generate different insulin assemblies and hence contrasting cellular responses. <i>Chemical Science</i> , 2014 , 5, 4367-4374	9.4	26
144	Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 4364-70	9.5	82
143	Ultrasensitive Telomerase Activity Detection in Circulating Tumor Cells Based on DNA Metallization and Sharp Solid-State Electrochemical Techniques. <i>Advanced Functional Materials</i> , 2014 , 24, 2727-2733	15.6	57
142	A smart "sense-act-treat" system: combining a ratiometric pH sensor with a near infrared therapeutic gold nanocage. <i>Advanced Materials</i> , 2014 , 26, 6635-41	24	79
141	Nucleoside Triphosphates as Promoters to Enhance Nanoceria Enzyme-like Activity and for Single-Nucleotide Polymorphism Typing. <i>Advanced Functional Materials</i> , 2014 , 24, 1624-1630	15.6	88
140	Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. <i>Biomaterials</i> , 2014 , 35, 9963-9971	1 ^{5.6}	155
139	Upconverting nanoparticles with a mesoporous TiOIshell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. <i>Chemistry - A European Journal</i> , 2014 , 20, 14012-7	4.8	72
138	Graphene quantum dots-band-aids used for wound disinfection. <i>ACS Nano</i> , 2014 , 8, 6202-10	16.7	485
137	Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. <i>Biomaterials</i> , 2014 , 35, 6646-56	15.6	116
136	Light controlled reversible inversion of nanophosphor-stabilized Pickering emulsions for biphasic enantioselective biocatalysis. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7498-504	16.4	190
135	"Plug and play" logic gates based on fluorescence switching regulated by self-assembly of nucleotide and lanthanide ions. <i>ACS Applied Materials & Company: Interfaces</i> , 2014 , 6, 9557-62	9.5	33
134	Near-Infrared Light-Encoded Orthogonally Triggered and Logical Intracellular Release Using Gold Nanocage@Smart Polymer Shell. <i>Advanced Functional Materials</i> , 2014 , 24, 826-834	15.6	35
133	Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. <i>NPG Asia Materials</i> , 2014 , 6, e114-e114	10.3	31
132	A Multi-synergistic Platform for Sequential Irradiation-Activated High-Performance Apoptotic Cancer Therapy. <i>Advanced Functional Materials</i> , 2014 , 24, 522-529	15.6	72

131	Methyl substitution regulates the enantioselectivity of supramolecular complex binding to human telomeric G-quadruplex DNA. <i>Chemistry - A European Journal</i> , 2014 , 20, 16467-72	4.8	9
130	Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. <i>Small</i> , 2014 , 10, 1841-7	11	33
129	NIR-responsive upconversion nanoparticles stimulate neurite outgrowth in PC12 cells. <i>Small</i> , 2014 , 10, 3655-61	11	23
128	G-Quadruplex binding enantiomers show chiral selective interactions with human telomere. <i>Nucleic Acids Research</i> , 2014 , 42, 3792-802	20.1	41
127	Target-responsive DNA-capped nanocontainer used for fabricating universal detector and performing logic operations. <i>Nucleic Acids Research</i> , 2014 , 42,	20.1	15
126	Reduced graphene oxide upconversion nanoparticle hybrid for electrochemiluminescent sensing of a prognostic indicator in early-stage cancer. <i>Small</i> , 2014 , 10, 330-6	11	53
125	Coupling exonuclease III with DNA metallization for amplified detection of biothiols at picomolar concentration. <i>Biosensors and Bioelectronics</i> , 2014 , 58, 214-8	11.8	10
124	Graphene-mesoporous silica-dispersed palladium nanoparticles-based probe carrier platform for electrocatalytic sensing of telomerase activity at less than single-cell level. <i>Advanced Healthcare Materials</i> , 2014 , 3, 588-95	10.1	14
123	Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer's disease. <i>Nature Communications</i> , 2014 , 5, 3422	17.4	160
122	Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. <i>Advanced Materials</i> , 2013 , 25, 4452-8	24	276
121	Aptamer-directed synthesis of multifunctional lanthanide-doped porous nanoprobes for targeted imaging and drug delivery. <i>Small</i> , 2013 , 9, 4262-8	11	21
120	Nucleic acid-mesoporous silica nanoparticle conjugates for keypad lock security operation. <i>Chemical Communications</i> , 2013 , 49, 2305-7	5.8	34
119	Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. <i>Biomaterials</i> , 2013 , 34, 4810-7	15.6	99
118	Enzyme-directed pH-responsive exfoliation and dispersion of graphene and its decoration by gold nanoparticles for use as a hybrid catalyst. <i>Nano Research</i> , 2013 , 6, 693-702	10	15
117	Highly photoluminescent amino-functionalized graphene quantum dots used for sensing copper ions. <i>Chemistry - A European Journal</i> , 2013 , 19, 13362-8	4.8	187
116	A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 41-6	11.8	218
115	Fluorescent protein capped mesoporous nanoparticles for intracellular drug delivery and imaging. <i>Chemistry - A European Journal</i> , 2013 , 19, 15378-83	4.8	22
114	3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. <i>Advanced Materials</i> , 2013 , 25, 6737-43	24	179

113	Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. <i>Chemical Science</i> , 2013 , 4, 2536	9.4	107
112	Gold Nanocage-Based Dual Responsive laged Metal Chelatorle Release System: Noninvasive Remote Control with Near Infrared for Potential Treatment of Alzheimer's Disease. <i>Advanced Functional Materials</i> , 2013 , 23, 5412-5419	15.6	63
111	A Pt-nanoparticle electrocatalytic assay used for PCR-free sensitive telomerase detection. <i>Chemical Communications</i> , 2013 , 49, 9986-8	5.8	29
110	Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. <i>Chemical Communications</i> , 2013 , 49, 1079-81	5.8	211
109	Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery. <i>Biomaterials</i> , 2013 , 34, 1364-71	15.6	104
108	Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. <i>Chemistry - A European Journal</i> , 2013 , 19, 1778-83	4.8	132
107	Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes. <i>Biomaterials</i> , 2013 , 34, 7444-52	15.6	56
106	Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. <i>ACS Applied Materials & Materials & Interfaces</i> , 2013 , 5, 1174-9	9.5	202
105	Ionic liquid as an efficient modulator on artificial enzyme system: toward the realization of high-temperature catalytic reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4207-10	16.4	93
104	Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. <i>Chemistry - A European Journal</i> , 2013 , 19, 7243-9	4.8	562
103	Combination delivery of antigens and CpG by lanthanides-based core-shell nanoparticles for enhanced immune response and dual-mode imaging. <i>Advanced Healthcare Materials</i> , 2013 , 2, 1309-13	10.1	15
102	Nanoceria-triggered synergetic drug release based on CeO(2) -capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO(2). <i>Advanced Healthcare Materials</i> , 2013 , 2, 1591-9	10.1	145
101	Self-assembled peptide-polyoxometalate hybrid nanospheres: two in one enhances targeted inhibition of amyloid Epeptide aggregation associated with Alzheimer's disease. <i>Small</i> , 2013 , 9, 3455-61	11	76
100	Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. <i>Biomaterials</i> , 2013 , 34, 2600-10	15.6	177
99	Near-infrared- and pH-responsive system for reversible cell adhesion using graphene/gold nanorods functionalized with i-motif DNA. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6726-30	16.4	101
98	Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. <i>Langmuir</i> , 2013 , 29, 6396-403	4	137
97	One-step DNA-programmed growth of CpG conjugated silver nanoclusters: a potential platform for simultaneous enhanced immune response and cell imaging. <i>Chemical Communications</i> , 2013 , 49, 6918-20	o ^{5.8}	35
96	Cancer Treatment: Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidase-Like Activity Over a Broad pH Range and its Application for Cancer Cell Detection (Adv. Mater. 18/2013). Advanced Materials. 2013, 25, 2510-2510.	24	7

(2012-2013)

Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. **Advanced Materials**, 2013 , 25, 2594-9	24	372
Versatile Fluorescent Conjugated Polyelectrolyte-Capped Mesoporous Silica Nanoparticles for Controlled Drug Delivery and Imaging. <i>ChemPlusChem</i> , 2013 , 78, 656-662	2.8	5
A general approach using spiroborate reversible cross-linked Au nanoparticles for visual high-throughput screening of chiral vicinal diols. <i>Chemical Science</i> , 2013 , 4, 1156	9.4	23
Long-circulating Gd(2)O(3):Yb(3+), Er(3+) up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. <i>Biomaterials</i> , 2013 , 34, 1712-21	15.6	139
A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-nitrophenol. <i>CrystEngComm</i> , 2013 , 15, 6329	3.3	35
Metallization of plasmid DNA for efficient gene delivery. <i>Chemical Communications</i> , 2013 , 49, 9791-3	5.8	20
Lanthanide-based hollow mesoporous nanoparticles: a novel multifunctional platform for simultaneous gene delivery and cell imaging. <i>Chemical Communications</i> , 2013 , 49, 7129-31	5.8	25
Targeting human telomeric higher-order DNA: dimeric G-quadruplex units serve as preferred binding site. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18786-9	16.4	106
Lighting up silica nanotubes transcribed from the submicron structure of a metal-peptide hybrid. <i>Nanotechnology</i> , 2013 , 24, 375603	3.4	6
Drug Delivery: Gold Nanocage-Based Dual Responsive Laged Metal Chelator Release System: Noninvasive Remote Control with Near Infrared for Potential Treatment of Alzheimer's Disease (Adv. Funct. Mater. 43/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 5338-5338	15.6	2
Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. <i>Nucleic Acids Research</i> , 2013 , 41, 7987-96	20.1	62
Near-Infrared- and pH-Responsive System for Reversible Cell Adhesion using Graphene/Gold Nanorods Functionalized with i-Motif DNA. <i>Angewandte Chemie</i> , 2013 , 125, 6858-6862	3.6	18
Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. <i>Biomaterials</i> , 2012 , 33, 6748-57	15.6	149
Electrochemical detection of dopamine using porphyrin-functionalized graphene. <i>Biosensors and Bioelectronics</i> , 2012 , 34, 57-62	11.8	228
Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. <i>Advanced Materials</i> , 2012 , 24, 125-31	24	126
Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. <i>Advanced Materials</i> , 2012 , 24, 1722-8	24	423
Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. <i>Chemical Communications</i> , 2012 , 48, 6556-8	5.8	51
Exonuclease-aided amplification for label-free and fluorescence turn-on DNA detection based on aggregation-induced quenching. <i>Chemical Communications</i> , 2012 , 48, 11662-4	5.8	50
	peroxidase-like activity over a broad pH range and its application for cancer cell detection. Advanced Materials, 2013, 25, 2594-9 Versatile Fluorescent Conjugated Polyelectrolyte-Capped Mesoporous Silica Nanoparticles for Controlled Drug Delivery and Imaging. ChemPlusChem, 2013, 78, 656-662 A general approach using spiroborate reversible cross-linked Au nanoparticles for visual high-throughput screening of chiral vicinal diols. Chemical Science, 2013, 4, 1156 Long-circulating Gd(2)O(3):Yb(3+), Er(3+) up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials, 2013, 34, 1712-21 A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-nitrophenol. CrystEngComm, 2013, 15, 6329 Metallization of plasmid DNA for efficient gene delivery. Chemical Communications, 2013, 49, 9791-3 Lanthanide-based hollow mesoporous nanoparticles: a novel multifunctional platform for simultaneous gene delivery and cell imaging. Chemical Communications, 2013, 49, 7129-31 Targeting human telomeric higher-order DNA: dimeric G-quadruplex units serve as preferred binding site. Journal of the American Chemical Society, 2013, 135, 18786-9 Lighting up silica nanotubes transcribed from the submicron structure of a metal-peptide hybrid. Nanotechnology, 2013, 24, 375603 Drug Delivery: Gold Nanocage-Based Dual Responsive Gaged Metal ChelatoriRelease System: Noninvasive Remote Control with Near Infrared for Potential Treatment of Alzhelmer's Disease (Adv. Funct. Mater. 43/2013). Advanced Functional Materials, 2013, 23, 5338-5338 Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Research, 2013, 41, 7987-96 Near-Infrared- and pH-Responsive System for Reversible Cell Adhesion using Graphene/Gold Nanorods Functionalized with i-Motif DNA. Angewandte Chemie, 2013, 125, 6858-6862 Long-circulating Er3+doped Yb2O3 up-conver	peroxidase-like activity over a broad pH range and its application for cancer cell detection. Advanced Materials, 2013, 25, 2594-9 Versatile Fluorescent Conjugated Polyelectrolyte-Capped Mesoporous Silica Nanoparticles for Controlled Drug Delivery and Imaging. ChemPlusChem, 2013, 78, 656-662 A general approach using spiroborate reversible cross-linked Au nanoparticles for visual high-throughput screening of chiral vicinal diols. Chemical Science, 2013, 4, 1156 94 Long-circulating Cd(2)O(3)Yb(3+), Er(3+) up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials, 2013, 34, 1712-21 A general and eco-friendly self-etching route to prepare highly active and stable Au@metal silicate yolk-shell nanoreactors for catalytic reduction of 4-nitrophenol. CrystEngComm, 2013, 15, 6329 Metallization of plasmid DNA for efficient gene delivery. Chemical Communications, 2013, 49, 9791-3 5.8 Lanthanide-based hollow mesoporous nanoparticles: a novel multifunctional platform for simultaneous gene delivery and cell imaging. Chemical Communications, 2013, 49, 7129-31 Targeting human telomeric higher-order DNA: dimeric G-quadruplex units serve as preferred binding site. Journal of the American Chemical Society, 2013, 135, 18786-9 Lighting up silica nanotubes transcribed from the submicron structure of a metal-peptide hybrid. Nanotechnology, 2013, 24, 375603 7 Drug Delivery: Gold Nanocage-Based Dual Responsive Eaged Metal ChelatoriRelease System: Noninvasive Remote Control with Near Infrared for Potential Treatment of Alzheimer's Disease (Adv. Funct. Mater. 43/2013). Advanced Functional Materials, 2013, 23, 538-5388 Lighting up left-handed 2-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Research, 2013, 41, 7887-96 Near-Infrared- and pH-Responsive System for Reversible Cell Adhesion using Graphene/Gold Nanorods Functionalized with i-Motif DNA. Angewandte Chemie, 2013, 125, 6858-6862 Long-circulating Er3+-doped Yb2O3

77	Using Thermally Regenerable Cerium Oxide Nanoparticles in Biocomputing to Perform Label-free, Resettable, and Colorimetric Logic Operations. <i>Angewandte Chemie</i> , 2012 , 124, 12747-12751	3.6	11
76	Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1257	9 1 8 3	77
75	Inhibition of metal-induced amyloid aggregation using light-responsive magnetic nanoparticle prochelator conjugates. <i>Chemical Science</i> , 2012 , 3, 868-873	9.4	46
74	Silver metallization engineered conformational switch of G-quadruplex for fluorescence turn-on detection of biothiols. <i>Chemical Communications</i> , 2012 , 48, 11428-30	5.8	34
73	Magnetic self-assembled zeolite clusters for sensitive detection and rapid removal of mercury(II). <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 431-7	9.5	44
72	A reversible DNA-silver nanoclusters-based molecular fluorescence switch and its use for logic gate operation. <i>Molecular BioSystems</i> , 2012 , 8, 921-6		14
71	Metallosupramolecular complex targeting an 扭discordant stretch of amyloid 中eptide. <i>Chemical Science</i> , 2012 , 3, 3145	9.4	59
70	Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. <i>Nature Communications</i> , 2012 , 3, 1074	17.4	116
69	Liberation of copper from amyloid plaques: making a risk factor useful for Alzheimer's disease treatment. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 9146-55	8.3	121
68	Aptamer-capped multifunctional mesoporous strontium hydroxyapatite nanovehicle for cancer-cell-responsive drug delivery and imaging. <i>Biomacromolecules</i> , 2012 , 13, 4257-63	6.9	67
67	Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 5001-9	9.5	110
66	DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. <i>Analyst, The</i> , 2012 , 137, 2588-92	5	74
65	Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds. <i>Nucleic Acids Research</i> , 2012 , 40, e122	20.1	73
64	Hybrid mesoporous gadolinium oxide nanorods: a platform for multimodal imaging and enhanced insoluble anticancer drug delivery with low systemic toxicity. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14982		50
63	Visualizing human telomerase activity with primer-modified Au nanoparticles. Small, 2012, 8, 259-64	11	134
62	Gold-Nanoparticle Sensors: Visualizing Human Telomerase Activity with Primer-Modified Au Nanoparticles (Small 2/2012). <i>Small</i> , 2012 , 8, 166-166	11	
61	Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. <i>Advanced Materials</i> , 2012 , 24, 2890-5	24	364
60	Label-free ultrasensitive detection of human telomerase activity using porphyrin-functionalized graphene and electrochemiluminescence technique. <i>Advanced Materials</i> , 2012 , 24, 2447-52	24	134

59	Drug Delivery: Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles (Adv. Mater. 21/2012). <i>Advanced Materials</i> , 2012 , 24, 2798-2798	24	О
58	Miniaturization of metal-biomolecule frameworks based on stereoselective self-assembly and potential application in water treatment and as antibacterial agents. <i>Chemistry - A European Journal</i> , 2012 , 18, 4322-8	4.8	79
57	Versatile logic devices based on programmable DNA-regulated silver-nanocluster signal transducers. <i>Chemistry - A European Journal</i> , 2012 , 18, 6663-9	4.8	64
56	Easy access to selective binding and recyclable separation of histidine-tagged proteins using Ni2+-decorated superparamagnetic nanoparticles. <i>Nano Research</i> , 2012 , 5, 450-459	10	18
55	Hierarchical magnetic coreBhell nanoarchitectures: non-linker reagent synthetic route and applications in a biomolecule separation system. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2935-2942		31
54	A label-free fluorescent turn-on enzymatic amplification assay for DNA detection using ligand-responsive G-quadruplex formation. <i>Chemical Communications</i> , 2011 , 47, 5461-3	5.8	154
53	Chiral detection using reusable fluorescent amylose-functionalized graphene. <i>Chemical Science</i> , 2011 , 2, 2050	9.4	59
52	Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. <i>Chemical Communications</i> , 2011 , 47, 1181-3	5.8	184
51	Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2445		518
50	Highly sensitive and selective detection of thiol-containing biomolecules using DNA-templated silver deposition. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 339-43	11.8	26
49	A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. <i>Biomaterials</i> , 2011 , 32, 2930-7	15.6	421
48	Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. <i>Nano Research</i> , 2011 , 4, 908-920	10	184
47	DNA-templated silver nanoparticles as a platform for highly sensitive and selective fluorescence turn-on detection of dopamine. <i>Small</i> , 2011 , 7, 1557-61	11	62
46	Combination of Graphene Oxide and Thiol-Activated DNA Metallization for Sensitive Fluorescence Turn-On Detection of Cysteine and Their Use for Logic Gate Operations. <i>Advanced Functional Materials</i> , 2011 , 21, 4565-4572	15.6	123
45	Polyoxometalates as Inhibitors of the Aggregation of Amyloid IPeptides Associated with Alzheimer Disease. <i>Angewandte Chemie</i> , 2011 , 123, 4270-4274	3.6	49
44	Innentitelbild: Polyoxometalates as Inhibitors of the Aggregation of Amyloid Peptides Associated with Alzheimer Disease (Angew. Chem. 18/2011). <i>Angewandte Chemie</i> , 2011 , 123, 4110-4110	3.6	
43	Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: dual stimuli-responsive vehicles for intracellular drug delivery. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 882-6	16.4	286
42	Polyoxometalates as inhibitors of the aggregation of amyloid peptides associated with Alzheimer's disease. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4184-8	16.4	170

41	Inside Cover: Polyoxometalates as Inhibitors of the Aggregation of Amyloid [Peptides Associated with Alzheimer Disease (Angew. Chem. Int. Ed. 18/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4024-4024	16.4	
40	Site-specific DNA-programmed growth of fluorescent and functional silver nanoclusters. <i>Chemistry - A European Journal</i> , 2011 , 17, 3774-80	4.8	81
39	Chiral metallo-supramolecular complexes selectively induce human telomeric G-quadruplex formation under salt-deficient conditions. <i>Chemistry - A European Journal</i> , 2011 , 17, 8209-15	4.8	53
38	Multivalued logic gates based on DNA. <i>Chemistry - A European Journal</i> , 2011 , 17, 9590-4	4.8	26
37	pH-responsive DNA assembly regulated through A-motif. Soft Matter, 2011 , 7, 10574	3.6	6
36	Metal-mediated fabrication of new functional G-quartet-based supramolecular nanostructure and potential application as controlled drug release system. <i>Chemical Science</i> , 2011 , 2, 1356	9.4	30
35	pH-controlled reversible drug binding and release using a cytosine-rich hairpin DNA. <i>Chemical Communications</i> , 2011 , 47, 8043-5	5.8	33
34	DNA-templated ensemble for label-free and real-time fluorescence turn-on detection of enzymatic/oxidative cleavage of single-stranded DNA. <i>Chemical Communications</i> , 2011 , 47, 8133-5	5.8	38
33	DNA-based logic gates operating as a biomolecular security device. <i>Chemical Communications</i> , 2011 , 47, 6024-6	5.8	60
32	Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. <i>Chemical Communications</i> , 2011 , 47, 3487-9	5.8	185
31	Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers. <i>Nucleic Acids Research</i> , 2011 , 39, 1638-44	20.1	178
30	DNA loop sequence as the determinant for chiral supramolecular compound G-quadruplex selectivity. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 492-8	8.3	58
29	Alzheimer's disease amyloid beta converting left-handed Z-DNA back to right-handed B-form. <i>Chemical Communications</i> , 2010 , 46, 7187-9	5.8	40
28	DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. <i>Analytical Chemistry</i> , 2010 , 82, 8211-6	7.8	129
27	Logic gates and pH sensing devices based on a supramolecular telomere DNA/conjugated polymer system. <i>Molecular BioSystems</i> , 2010 , 6, 1928-32		37
26	Luminescent Rare-Earth Complex Covalently Modified Single-Walled Carbon Nanotubes: Design, Synthesis, and DNA Sequence-Dependent Red Luminescence Enhancement. <i>Chemistry of Materials</i> , 2010 , 22, 5718-5724	9.6	31
25	Recognition and regulation of unique nucleic acid structures by small molecules. <i>Chemical Communications</i> , 2010 , 46, 7283-94	5.8	82
24	Ultrasensitive and Selective Detection of a Prognostic Indicator in Early-Stage Cancer Using Graphene Oxide and Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2010 , 20, 3967-3971	15.6	122

(2000-2010)

23	Ultrasensitive and Selective Detection of a Prognostic Indicator in Early-Stage Cancer Using Graphene Oxide and Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2010 , 20, 3966-3966	15.6	4
22	Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. <i>Advanced Materials</i> , 2010 , 22, 2206-10	24	1592
21	A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition. <i>Chemistry - A European Journal</i> , 2010 , 16, 2605-10	4.8	73
20	Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. <i>Chemistry - A European Journal</i> , 2010 , 16, 3617-21	4.8	442
19	A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions. <i>Chemistry - A European Journal</i> , 2010 , 16, 8147-54	4.8	146
18	A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. <i>ACS Nano</i> , 2009 , 3, 1183-9	16.7	169
17	Small-molecule selectively recognizes human telomeric G-quadruplex DNA and regulates its conformational switch. <i>Biophysical Journal</i> , 2009 , 97, 2014-23	2.9	28
16	i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13813-8	16.4	111
15	A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation. <i>Chemical Communications</i> , 2008 , 6149-51	5.8	66
14	Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA. <i>Nucleic Acids Research</i> , 2008 , 36, 5695-703	20.1	166
13	Different hydration changes accompanying copper and zinc binding to amyloid beta-peptide: water contribution to metal binding. <i>ChemBioChem</i> , 2008 , 9, 879-82	3.8	42
12	Time-dependent DNA condensation induced by amyloid beta-peptide. <i>Biophysical Journal</i> , 2007 , 92, 18	5 -2 9	55
11	Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 19658-63	11.5	233
10	Molecular recognition of nucleic acids: coralyne binds strongly to poly(A). FEBS Letters, 2005, 579, 5035	5 -9 .8	98
9	Molecular recognition of basic fibroblast growth factor by polyoxometalates. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4048-52	16.4	40
8	Molecular Recognition of Basic Fibroblast Growth Factor by Polyoxometalates. <i>Angewandte Chemie</i> , 2005 , 117, 4116-4120	3.6	20
7	Tiny telomere DNA. <i>Nucleic Acids Research</i> , 2002 , 30, 2307-15	20.1	66
6	NB-506, an indolocarbazole topoisomerase I inhibitor, binds preferentially to triplex DNA. <i>FEBS Letters</i> , 2000 , 470, 355-9	3.8	28

5	Formaldehyde-induced alkylation of a 2'-aminoglucose rebeccamycin derivative to both A.T and G.C base pairs in DNA. <i>Journal of Medicinal Chemistry</i> , 2000 , 43, 4711-20	8.3	14
4	Parsing free energies of drug-DNA interactions. <i>Methods in Enzymology</i> , 2000 , 323, 373-405	1.7	65
3	Energetics of DNA intercalation reactions. <i>Biochemistry</i> , 2000 , 39, 8439-47	3.2	259
2	Sequence and structural selectivity of nucleic acid binding ligands. <i>Biochemistry</i> , 1999 , 38, 16067-75	3.2	473
1	Specific generation of nitric oxide in mitochondria of cancer cell for selective oncotherapy. <i>Nano</i>	10	2