Mohamed A Mattar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses. Agricultural Water Management, 2022, 265, 107529.	2.4	9
2	Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models. Agronomy, 2022, 12, 594.	1.3	24
3	Farmers' Perception and Efficacy of Adaptation Decisions to Climate Change. Agronomy, 2022, 12, 1023.	1.3	7
4	Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy, 2022, 12, 1140.	1.3	15
5	Tillage, Water and Nitrogen Management Strategies Influence the Water Footprint, Nutrient Use Efficiency, Productivity and Profitability of Rice in Typic Ustochrept Soil. Agronomy, 2022, 12, 1186.	1.3	2
6	Combining Planting Patterns with Mulching Bolsters the Soil Water Content, Growth, Yield, and Water Use Efficiency of Spring Wheat under Limited Water Supply in Arid Regions. Agronomy, 2022, 12, 1298.	1.3	7
7	Irrigation Scheduling and Production of Wheat with Different Water Quantities in Surface and Drip Irrigation: Field Experiments and Modelling Using CROPWAT and SALTMED. Agronomy, 2022, 12, 1488.	1.3	6
8	Field study and regression modeling on soil water distribution with mulching and surface or subsurface drip irrigation systems. International Journal of Agricultural and Biological Engineering, 2021, 14, 142-150.	0.3	0
9	Effects of Various Quantities of Three Irrigation Water Types on Yield and Fruit Quality of â€ [~] Succary' Date Palm. Agronomy, 2021, 11, 796.	1.3	15
10	Impact of El Niño Southern Oscillation on Rainfall and Rice Production: A Micro-Level Analysis. Agronomy, 2021, 11, 1021.	1.3	5
11	Efficacy of Herbicides in Controlling Wild Onion (Asphodelus tenuifolius L.) in Cumin Grown under Arid Climatic Conditions. Agronomy, 2021, 11, 1597.	1.3	1
12	Differential Accumulation of Metabolites in Suaeda Species Provides New Insights into Abiotic Stress Tolerance in C4-Halophytic Species in Elevated CO2 Conditions. Agronomy, 2021, 11, 131.	1.3	17
13	Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop. Irrigation Science, 2021, 39, 517-533.	1.3	17
14	Groundwater Level Prediction Using a Multiple Objective Genetic Algorithm-Grey Relational Analysis Based Weighted Ensemble of ANFIS Models. Water (Switzerland), 2021, 13, 3130.	1.2	11
15	Lead-Tolerant Bacillus Strains Promote Growth and Antioxidant Activities of Spinach (Spinacia) Tj ETQq1 1 0.784	-314.rgBT 1.3	/Oyerlock 10
16	Hydraulic performance of labyrinth-channel emitters: experimental study, ANN, and GEP modeling. Irrigation Science, 2020, 38, 1-16.	1.3	10
17	Soil water status and growth of tomato with partial root-zone drying and deficit drip irrigation techniques. Irrigation Science, 2020, 38, 163-176.	1.3	24
18	Effects of Water Stress and Modern Biostimulants on Growth and Quality Characteristics of Mint. Agronomy, 2020, 10, 6.	1.3	31

Mohamed A Mattar

#	Article	IF	CITATIONS
19	Residue and Potassium Management Strategies to Improve Crop Productivity, Potassium Mobilization, and Assimilation under Zero-Till Maize–Wheat Cropping System. Agriculture (Switzerland), 2020, 10, 401.	1.4	8
20	Response of Drip Irrigation and Fertigation on Cumin Yield, Quality, and Water-Use Efficiency Grown under Arid Climatic Conditions. Agronomy, 2020, 10, 1711.	1.3	4
21	Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew's Mallow. Agronomy, 2020, 10, 420.	1.3	32
22	Artemisia absinthium L.—Importance in the History of Medicine, the Latest Advances in Phytochemistry and Therapeutical, Cosmetological and Culinary Uses. Plants, 2020, 9, 1063.	1.6	52
23	Effect of mulching and subsurface drip irrigation on soil water status under arid environment. Spanish Journal of Agricultural Research, 2020, 18, e1201.	0.3	4
24	Water-Saving Irrigation Strategies in Potato Fields: Effects on Physiological Characteristics and Water Use in Arid Region. Agronomy, 2019, 9, 172.	1.3	13
25	Phenolic Compounds of Catalpa speciosa, Taxus cuspidate, and Magnolia acuminata have Antioxidant and Anticancer Activity. Molecules, 2019, 24, 412.	1.7	39
26	Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants, 2019, 8, 486.	1.6	46
27	GEP and MLR approaches for the prediction of reference evapotranspiration. Neural Computing and Applications, 2019, 31, 5843-5855.	3.2	22
28	Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt. Agricultural Water Management, 2018, 198, 28-38.	2.4	67
29	Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques. Agricultural Water Management, 2018, 195, 211-221.	2.4	35
30	Gene expression programming approach for modeling the hydraulic performance of labyrinth-channel emitters. Computers and Electronics in Agriculture, 2017, 142, 450-460.	3.7	9
31	Comparative effects of two water-saving irrigation techniques on soil water status, yield, and water use efficiency in potato. Scientia Horticulturae, 2017, 225, 525-532.	1.7	25
32	Field assessment of surge and continuous furrow irrigation methods in relation to tillage systems. International Agrophysics, 2017, 31, 219-230.	0.7	3
33	Modeling sprinkler irrigation infiltration based on a fuzzy-logic approach. Spanish Journal of Agricultural Research, 2017, 15, e1201.	0.3	8
34	Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid Conditions. Water Resources, 2016, 43, 412-427.	0.3	13
35	Modeling daily evapotranspiration in hyper-arid environment using gene expression programming. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	12
36	Evaluating and Calibrating Reference Evapotranspiration Models Using Water Balance under Hyper-Arid Environment. Water Resources Management, 2016, 30, 3745-3767.	1.9	12

Mohamed A Mattar

#	Article	IF	CITATIONS
37	A new predictive model for furrow irrigation infiltration using gene expression programming. Computers and Electronics in Agriculture, 2016, 122, 168-175.	3.7	19
38	Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 2016, 163, 110-124.	2.4	131
39	MODELLING DAILY EVAPOTRANSPIRATION USING ARTIFICIAL NEURAL NETWORKS UNDER HYPER ARID CONDITIONS. Pakistan Journal of Agricultural Sciences, 2016, 53, 695-712.	0.1	5
40	Soil Wetting Pattern from Subsurface Drip Irrigation as Affected by Application of a Polyacrylamide Layer ^{â€} . Irrigation and Drainage, 2015, 64, 609-618.	0.8	5
41	Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment. Solar Energy, 2015, 118, 41-58.	2.9	71
42	Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters. Computers and Electronics in Agriculture, 2015, 114, 189-201.	3.7	33
43	Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water. Agricultural Water Management, 2015, 154, 1-10.	2.4	15
44	Forecasting furrow irrigation infiltration using artificial neural networks. Agricultural Water Management, 2015, 148, 63-71.	2.4	36
45	Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance. Spanish Journal of Agricultural Research, 2014, 12, 580.	0.3	18
46	Field Assessment of Friction Head Loss and Friction Correction Factor Equations. Journal of Irrigation and Drainage Engineering - ASCE, 2012, 138, 166-176.	0.6	42