
Hans Ragnar Widlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436, 117-122.	13.7	1,329
2	Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell, 2013, 23, 302-315.	7.7	689
3	Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability. Cell, 2002, 109, 707-718.	13.5	671
4	BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Current Biology, 2005, 15, 249-254.	1.8	626
5	PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress. Cancer Cell, 2013, 23, 287-301.	7.7	600
6	Central Role of p53 in the Suntan Response and Pathologic Hyperpigmentation. Cell, 2007, 128, 853-864.	13.5	552
7	A Systematic Screen for CDK4/6 Substrates Links FOXM1 Phosphorylation to Senescence Suppression in Cancer Cells. Cancer Cell, 2011, 20, 620-634.	7.7	449
8	Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 2004, 6, 565-576.	7.7	373
9	Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene, 2003, 22, 3035-3041.	2.6	337
10	GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature, 2009, 459, 1085-1090.	13.7	311
11	β-Catenin–induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. Journal of Cell Biology, 2002, 158, 1079-1087.	2.3	268
12	MLANA/MART1 and SILV/PMEL17/GP100 Are Transcriptionally Regulated by MITF in Melanocytes and Melanoma. American Journal of Pathology, 2003, 163, 333-343.	1.9	266
13	Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development (Cambridge), 2004, 131, 217-228.	1.2	193
14	Transcriptional Regulation of the Melanoma Prognostic Marker Melastatin (TRPM1) by MITF in Melanocytes and Melanoma. Cancer Research, 2004, 64, 509-516.	0.4	191
15	PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E699-708.	3.3	190
16	Identification and characterization of genomic nucleosome-positioning sequences. Journal of Molecular Biology, 1997, 267, 807-817.	2.0	180
17	NFATc2-Mediated Repression of Cyclin-Dependent Kinase 4 Expression. Molecular Cell, 2002, 10, 1071-1081.	4.5	176
18	Oncogenic MITF dysregulation in clear cell sarcoma: Defining the MiT family of human cancers. Cancer Cell, 2006, 9, 473-484.	7.7	172

Hans Ragnar Widlund

#	Article	IF	CITATIONS
19	A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature, 2016, 537, 422-426.	13.7	161
20	VEGFR-1 Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Growth. Cancer Research, 2011, 71, 1474-1485.	0.4	142
21	Imatinib Targeting of KIT-Mutant Oncoprotein in Melanoma. Clinical Cancer Research, 2008, 14, 7726-7732.	3.2	126
22	MC1R Is a Potent Regulator of PTEN after UV Exposure in Melanocytes. Molecular Cell, 2013, 51, 409-422.	4.5	122
23	An Oncogenic Role for <i>ETV1</i> in Melanoma. Cancer Research, 2010, 70, 2075-2084.	0.4	107
24	Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell and Melanoma Research, 2008, 21, 457-463.	1.5	104
25	Hypoxia-induced transcriptional repression of the melanoma-associated oncogene <i>MITF</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E924-33.	3.3	101
26	Phosphatase-Dependent and -Independent Functions of Shp2 in Neural Crest Cells Underlie LEOPARD Syndrome Pathogenesis. Developmental Cell, 2010, 18, 750-762.	3.1	96
27	ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. Cell Reports, 2017, 18, 1543-1557.	2.9	95
28	SOX2 contributes to melanoma cell invasion. Laboratory Investigation, 2012, 92, 362-370.	1.7	85
29	PGC-1 Coactivators: Shepherding the Mitochondrial Biogenesis of Tumors. Trends in Cancer, 2016, 2, 619-631.	3.8	84
30	A Tissue-restricted cAMP Transcriptional Response. Journal of Biological Chemistry, 2003, 278, 45224-45230.	1.6	83
31	Molecular Pathways: BRAF Induces Bioenergetic Adaptation by Attenuating Oxidative Phosphorylation. Clinical Cancer Research, 2014, 20, 2257-2263.	3.2	79
32	TGGA repeats impair nucleosome formation. Journal of Molecular Biology, 1998, 281, 253-260.	2.0	76
33	Nucleosome Structural Features and Intrinsic Properties of the TATAAACGCC Repeat Sequence. Journal of Biological Chemistry, 1999, 274, 31847-31852.	1.6	72
34	DNA Sequence-Dependent Contributions of Core Histone Tails to Nucleosome Stability:  Differential Effects of Acetylation and Proteolytic Tail Removal. Biochemistry, 2000, 39, 3835-3841.	1.2	63
35	MAPK/ERK-Dependent Translation Factor Hyperactivation and Dysregulated Laminin γ2 Expression in Oral Dysplasia and Squamous Cell Carcinoma. American Journal of Pathology, 2012, 180, 2462-2478.	1.9	58
36	Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. Journal of Clinical Investigation, 2016, 127, 349-364.	3.9	49

#	Article	IF	CITATIONS
37	Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nature Communications, 2018, 9, 3368.	5.8	40
38	<i>PIK3CA</i> mutant tumors depend on oxoglutarate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3434-E3443.	3.3	38
39	Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans. Frontiers in Immunology, 2018, 9, 2857.	2.2	37
40	Dual Suppression of the Cyclin-Dependent Kinase Inhibitors CDKN2C and CDKN1A in Human Melanoma. Journal of the National Cancer Institute, 2012, 104, 1673-1679.	3.0	35
41	H3K27me3-mediated PGC1α gene silencing promotes melanoma invasion through WNT5A and YAP. Journal of Clinical Investigation, 2020, 130, 853-862.	3.9	32
42	Melanoma Cell Galectin-1 Ligands Functionally Correlate with Malignant Potential. Journal of Investigative Dermatology, 2015, 135, 1849-1862.	0.3	29
43	ERRα Maintains Mitochondrial Oxidative Metabolism and Constitutes an Actionable Target in PGC1α-Elevated Melanomas. Molecular Cancer Research, 2017, 15, 1366-1375.	1.5	23
44	Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube. Developmental Biology, 2006, 292, 152-164.	0.9	19
45	A Novel Role for Microphthalmia-Associated Transcription Factor–Regulated Pigment Epithelium-Derived Factor during Melanoma Progression. American Journal of Pathology, 2015, 185, 252-265.	1.9	17
46	MITF is a driver oncogene and potential therapeutic target in kidney angiomyolipoma tumors through transcriptional regulation of CYR61. Oncogene, 2021, 40, 112-126.	2.6	14
47	IL1α Antagonizes IL1β and Promotes Adaptive Immune Rejection of Malignant Tumors. Cancer Immunology Research, 2020, 8, 660-671.	1.6	13
48	Small Interfering RNA. Journal of Investigative Dermatology, 2013, 133, 1-4.	0.3	11
49	RSK Activation of Translation Factor elF4B Drives Abnormal Increases of Laminin γ2 and MYC Protein during Neoplastic Progression to Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e78979.	1.1	11
50	Breaking BRAF(V600E)–drug resistance by stressing mitochondria. Pigment Cell and Melanoma Research, 2016, 29, 401-403.	1.5	5
51	Potent p53-independent tumor suppressor activity of ARF in melanoma-genesis. Pigment Cell & Melanoma Research, 2007, 20, 070811024453003-???.	4.0	3
52	CXCR4 pathway associated with family history of melanoma. Cancer Causes and Control, 2014, 25, 125-132.	0.8	3
53	Response to Slominski etÂal Pigment Cell & Melanoma Research, 2007, 20, 309-310.	4.0	0
54	Skin Inflammation in Human Health and Disease: 2018 International Conference. Journal of Investigative Dermatology, 2019, 139, 991-994.	0.3	0